

MELSEC System Q

Programmable Logic Controllers

User's Manual

NAMUR Input Module ME1X16NA-Q

Version check

About this Manual

The texts, illustration, diagrams and examples in this manual are provided for information purposes only. They are intended as aids to help explain the installation, operation, programming and use of the programmable logic controllers of the MELSEC System Q

If you have any questions about the installation and operation of any of the products described in this manual please contact your local sales office or distributor (see back cover). You can find the latest information and answers to frequently asked questions on our website at www.mitsubishi-automation.com.

MITSUBISHI ELECTRIC EUROPE BV reserves the right to make changes to this manual or the technical specifications of its products at any time without notice.

© 2013

			ME1X1 User's	out Module 6NA-Q Manual	
				: 260166	
-	Version			anges / Additions / Corrections	
А	01/2013	pdp-dk	First edition		
1					
1					
1					
1					
1					
1					
1					

Contents

Overvie	2W					
Introdu	ction					
Feature	Features of the ME1X16NA-Q 1-2					
System Configuration						
Applicable Systems						
How to Check the Function Version and Serial No. of the Modules						
Detaile	d Description of the Module					
Part Nar 3.1.1	nes					
Specific 3.2.1 3.2.2	ations					
Functio 3.3.1 3.3.2 3.3.3 3.3.4	ns of the NAMUR Input Module					
I/O Sign 3.4.1 3.4.2	als for the Programmable Controller CPU					
 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 	Memory3-15Buffer Memory Assignment3-16Filtered Input Values (Un\G0)3-18Latched Wire Break Flags (Un\G1)3-18Latched Short Circuit Flags (Un\G2)3-19Flutter Monitor Flags (Un\G3)3-20Error Detection Settings (Un\G4)3-21Wire Break Flags (Un\G5)3-22Short Circuit Flags (Un\G6)3-22					
	Introduc Features System Applicat How to Detaile Part Nar 3.1.1 Specific 3.2.1 3.2.2 Function 3.3.1 3.2.2 Function 3.3.1 3.3.2 3.3.3 3.3.4 I/O Sign 3.4.1 3.4.2 Buffer M 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6					

3.5.9	Event Buffer Enable Settings (Positive Edge (Un\G8), negative Edge (Un\G9))3-23
3.5.10	Event Buffer Enable Settings (Errors) (Un\G10)
3.5.11	Event Buffer (Un\G11 to Un\G28)3-25
3.5.12	Short Pulse Discrimination Time CH (Un\G30 to Un\G45)3-27
3.5.13	Pulse Stretching Time CH (Un\G46 to Un\G61)3-28
3.5.14	Flutter Monitoring Parameters CH (Un\G62 to Un\G77)3-28
3.5.15	Real-Time Clock Setting (Un\G80 to Un\G87)
3.5.16	Error Code (Un\G90)

4 Setup and Procedures before Operation

4.1	Handlin	g Precautions	4-1
4.2	Setup a	nd Procedures before Operation	4-2
4.3	Installat	ion of the Module	4-3
4.4	Wiring		4-4
	4.4.1	Wiring Precautions	4-4
	4.4.2	External Wiring	4-7
4.5	PLC Para	ameter Setting	4-8
	4.5.1	I/O Assignment	4-8
	4.5.2	Intelligent Function Module Switch Settings	4-9

5 Programming

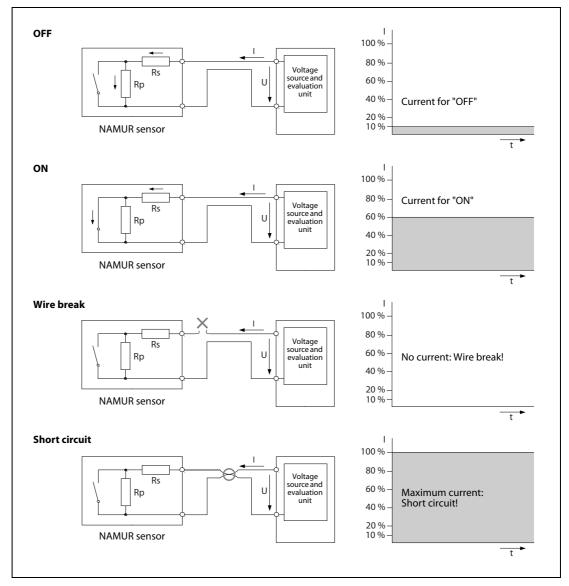
5.1	Progran	nming Procedure	. 5-1
5.2	Example	e 1: Reading of Input Values and Error Handling	. 5-3
	5.2.1	Before Creating a Program	. 5-4
	5.2.2	Program	. 5-5
5.3	Example	e 2: Signal Conditioning	. 5-9
	5.3.1	Before Creating a Program	. 5-9
	5.3.2	Program	5-10

6	Trouble	eshooting	
6.1	Error Co	de List	. 6-1
6.2	Trouble	shooting by Symptom	. 6-2
	6.2.1	When the LEDs of the ME1X16NA-Q are not turned ON	. 6-2
	6.2.2	When the Input Values cannot be read	. 6-2
	6.2.3	When Wire Breaks and Short Circuits are not detected	. 6-3
	6.2.4	When there is always a Wire Break detected (XnD is ON)	. 6-3
	6.2.5	When Flutter is not detected	. 6-3
	6.2.6	When Events are not recorded	. 6-3
	6.2.7	When the Short Pulse Discrimination Function is not working	. 6-4
	6.2.8	When the Pulse Stretching Function is not working	. 6-4
6.3	Checkin	g the Module Status	. 6-5

INDEX

1 Overview

This User's Manual describes the specifications, handling and programming methods for the NAMUR Input Module ME1X16NA-Q (hereinafter referred to as the ME1X16NA-Q) which is used with the programmable controllers of the MELSEC System Q.


Before using the ME1X16NA-Q, please read this manual and the relevant manuals carefully and develop familiarity with the functions and performance of the MELSEC System Q series programmable controller to handle the product correctly.

1.1 Introduction

The ME1X16NA-Q is a digital input module for connection of up to 16 NAMUR sensors.

NAMUR is an international user association of automation technology in process industries. The principle of operation of a NAMUR sensor is based on the recommendations of this association.

In contrast to an ordinary binary sensor with only two states (ON and OFF), a NAMUR sensor can indicate four states: ON, OFF, wire break and short circuit.

Fig. 3-1: The sensor current is an indication of the four states of a NAMUR sensor

1.2 Features of the ME1X16NA-Q

Connection of up to 16 NAMUR sensors

Up to 16 NAMUR sensors can be connected to a single ME1X16NA-Q. The ME1X16NA-Q supplies the voltage for the sensors and measures the current in order to detect their individual states.

Wire breaks and short circuits are recognised for each input. The respective input is "0" within the wire break or short circuit condition.

As an alternative to NAMUR sensors, contacts with an external resistor network can be used.

Event monitoring

The ME1X16NA-Q can monitor the sensor status (switched ON, switched OFF, wire break, short circuit, fluttering signal), and store the historical data of occurred events into an internal buffer.

Time stamping

Events are marked with a time stamp from the internal clock of the ME1X16NA-Q.

Pulse conditioning

The ME1X16NA-Q can blank out short pulses as well as stretch pulses to an adjustable minimum length.

Flutter monitoring

Fluttering input signals can be detected. This can be a hint for a defective sensor or a poorly adjusted target.

For a detailed description of the functions of the ME1X16NA-Q, please refer to section 3.3.

2 System Configuration

2.1 Applicable Systems

Applicable modules, base units, and No. of modules

• When mounted with a CPU module

The table below shows the CPU modules and base units applicable to the NAMUR Input Module ME1X16NA-Q and quantities for each CPU model.

Depending on the combination with other modules or the number of mounted modules, the power supply capacity may be insufficient. Pay attention to the power supply capacity before mounting modules, and if the power supply capacity is insufficient, change the combination of the modules.

Ар	plicable CPU m	odule	No. of	Base	unit ^{*2}
CPU	type	CPU model	ME1X16NA-Q that can be installed ^{*1}	Main base unit	Extension base unit
		Q00JCPU	Up to 16		
	Basic model QCPU	Q00CPU	Up to 24	•	•
	20.0	Q01CPU	0p to 24		
		Q02CPU			
	High	Q02HCPU			
	performance	Q06HCPU	Up to 64	•	•
	model QCPU	Q12HCPU			
		Q25HCPU			
	Process CPU	Q02PHCPU			
		Q06PHCPU	Un to C4		
Programmable	Process CPU	Q12PHCPU	Up to 64	•	•
controller CPU		Q25PHCPU			
	Redundant	Q12PRHCPU	lin to 52	0	
	CPU	Q25PRHCPU	Up to 53	0	•
		Q00UJCPU	Up to 16	•	•
		Q00UCPU	Up to 24		
	Universal	Q01UCPU	Up to 24		
	model QCPU	Q02UCPU	Up to 36		
	-	Q□UD(E)CPU		•	•
		Q50UDEHCPU	Up to 64		
		Q100UDEHCPU			
	Safety CPU	QS001CPU	_	0	0
		Q06CCPU-V-H01			
C Controller mod	ulo	Q06CCPU-V	lin to 64		
C Controller Mod	ule	Q06CCPU-V-B	Up to 64	•	-
		Q12DCCPU-V			

Tab. 2-1: Applicable base units and number of mountable modules

• : Applicable, O: Not applicable

*1 Limited within the range of I/O points for the CPU module.

*2 The ME1X16NA-Q can be installed to any I/O slot of a base unit.

Mounting to a MELSECNET/H remote I/O station

The table below shows the network modules and base units applicable to the analog output module ME1X16NA-Q and quantities for each network module model.

Depending on the combination with other modules or the number of mounted modules, power supply capacity may be insufficient. Pay attention to the power supply capacity before mounting modules, and if the power supply capacity is insufficient, change the combination of the modules.

	No. of ME1X16NA-Q that	Base unit ^{*2}		
Applicable network module	can be installed ^{*1}	Main base unit of remote I/O station	Extension base unit of remote I/O station	
QJ72LP25-25				
QJ72LP25G	Up to 64			
QJ72LP25GE	0p to 64	•	•	
QJ72BR15				

 Tab. 2-2:
 Applicable base units and number of mountable modules in a MELSECNET/H remote I/O station

• : Applicable, O: Not applicable

*1 Limited within the range of I/O points for the network module. *2 The ME1X16NA-Q can be installed to any I/O slot of a base unit.

NOTES The Basic model QCPU or C Controller module cannot create the MELSECNET/H remote I/O network.

When using the time stamping function for a NAMUR input module mounted in a remote I/O station, please consider the delay of the I/O signals and the clock data send to the module.

Support of the multiple CPU system

The function version of the NAMUR input module supports the multiple CPU system. When using the ME1X16NA-Q in a multiple CPU system, refer to the following manual first.

- QCPU User's Manual (Multiple CPU System)
- Intelligent function module parameters

Write intelligent function module parameters to only the control CPU of the ME1X16NA-Q.

Compatibility with online module change

An online module change is a function that allows the module of the MELSEC System Q mounted on the main base unit or extension base unit to be changed during system control executed by a Process CPU or a Redundant CPU.

NOTE The Basic model QCPU, High Performance model QCPU and Universal model QCPU are not compatible with an online module change.

Using an online module change, the module that failed during control can be replaced with the module of the same model name.

The ME1X16NA-Q does support online module change. It can be replaced online (while power is on) on any MELSECNET/H remote I/O station or in the system where a CPU module supporting the online module change function is used.

For details, refer to the relevant sections in the QCPU User's Manual (Hardware Design, Maintenance and Inspection).

Supported software packages

For setting the PLC parameters for a system containing the ME1X16NA-Q and programming the software packages GX Developer, GX IEC Developer and GX Works2 can be used.

Depending on the CPU module used, a certain version of the software is needed since newly CPU modules are not supported by previous versions.

2.2 How to Check the Function Version and Serial No. of the Modules

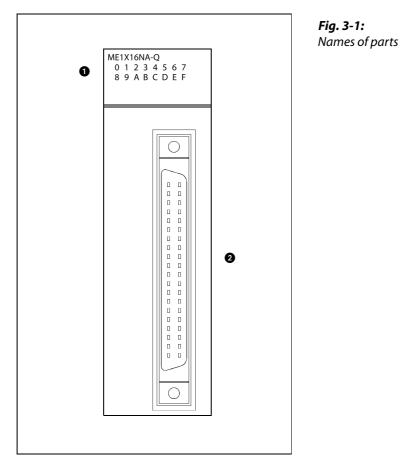
Using the programming software GX Developer, GX IEC Developer or GX Works2, the serial No. and the function version can be checked while the PLC is operating.

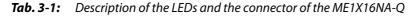
From the **Diagnostics** menu select **System Monitor** and then select **Product Inf. List.**

Slot	Туре	Series	Model name	Points	I/O No.	Master PLC	Serial No	Ver.
PLC	PLC	Q	Q02HCPU	1	1 an 1		021220000000000	В
0-0	Intelli.	Q	026ME1X16NA-Q	32pt	0000	<u>82</u>	120310000000000	В
0 1	Tenut	0	AVOA / TO	1 Ent	0020		rial number rst 5 digits)	Functio versio

Fig. 2-1: Product Information List for a PLC with a ME1X16NA-Q

NOTE


The serial number displayed on the product information screen of GX Developer, GX IEC Developer or GX Works2 describes the function information of the product. The function information of the product is updated when a new function is added.


3 Detailed Description of the Module

3.1 Part Names

This section explains the names of the components for the ME1X16NA-Q.

No.	Name	Description			
0	Indicator LEDs	Used to indicate the status of each input. (0: Input CH0 to F: Input CHF) On: Input is ON Off: Input is OFF			
2 40-pin connector Used for connection of the NAMUR sensors and the external period		Used for connection of the NAMUR sensors and the external power supply.			

3.1.1 Signal Layout of the Connector

C	onnect	or	Pin	Signal	Pin	Signal	Channel	Remark
			B20	Vacant	A20	Vacant	_	—
	\bigcap		B19	DI0	A19	VS0	0	
B20		A20	B18	DI1	A18	VS1	1	
B19 B18		A19 A18	B17	DI2	A17	VS2	2	
В16 B17		A16 A17	B16	DI3	A16	VS3	3	-
B16		A16	B15	DI4	A15	VS4	4	-
B15 B14		A15 A14	B14	DI5	A14	VS5	5	-
B14		A14 A13	B13	DI6	A13	VS6	6	Digital inputs (DI) and voltage
B12		A12 A11 A10	B12	DI7	A12	VS7	7	supply (VS) for the sensor.
B11 B10			B11	DI8	A11	VS8	8	Connect the sensor to DI and
B9		A9	B10	DI9	A10	VS9	9	VS \square (\square = 0 to F).
B8		A8	B9	DIA	A9	VSA	А	-
B7 B6		A7 A6	B8	DIB	A8	VSB	В	
B5		A5	B7	DIC	A7	VSC	С	
B4 B3		A4 A3	B6	DID	A6	VSD	D	
B3 B2		A3 A2	B5	DIE	A5	VSE	E	
B1		A1	B4	DIF	A4	VSF	F	
	\bigcirc		B3	Managet	A3	Managet		
Mod	ule front	t view	B2	Vacant	A2	Vacant		-
			B1	24G	A1	24V	_	External power supply A1: +24 V DC B1: 0 V

 Tab. 3-2:
 Signal layout for the 40-pin connector of the ME1X16NA-Q

WARNING:

Leave the "vacant" pins unconnected.

For the wiring of the NAMUR input module ME1X16NA-Q please refer to section 4.4.

3.2 Specifications

The specifications for the ME1X16NA-Q are shown in the following table. For general specifications, refer to the operation manual for the CPU module being used.

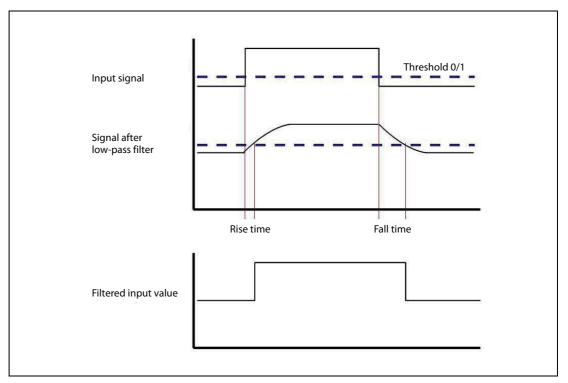
Specification		ME1X16NA-Q			
Number of NAMU	IR inputs	16 channels			
Sensor voltage (fr	om internal power supply)	8.2 V DC			
ON current		>2.1 mA			
OFF current		<1.2 mA			
Hysteresis		0.2 mA			
Wire break detect	ion current	<0.2 mA			
Short circuit deter	ction current	>7.5 mA			
Maximum short c	ircuit current	8.9 mA			
Posponso timo	OFF to ON	3 ms/6 ms or less (configured in PLC parameter) $^{(1)}$ (Default: 6 ms)			
Response time	ON to OFF	3 ms/6 ms or less (configured in PLC parameter) \heartsuit (Default: 6 ms)			
Time stamping	Resolution	1 ms			
	Between the I/O terminals and PLC power supply	Digital isolator insulation			
Insulation method	Between I/O terminals and external power supply (24 V DC)	Photocoupler/transformer insulation			
	Between channels	Non-insulated			
Dielectric with- stand voltage	Between I/O terminals and	500 V ACrms for 1 min			
Insulation resistance	programmable controller power supply	500 V DC 10 M Ω or higher			
Number of occup	ied I/O points	32 points (I/O assignment: Intelligent 32 points)			
	Connection system	40-pin connector			
F	Applicable connectors	A6CON1, A6CON2, A6CON3, A6CON4 (optional)			
External wiring connections	Cable specification	Shielded cable			
connections	Applicable wire size	0.3 mm ² (A6CON1 and A6CON4), 0.08–0.2 mm ² (A6CON2), 0.05 mm ² (A6CON3, single wire), 0.08 mm ² (A6CON3, stranded wire)			
	Voltage	24 V DC (+20%, -15%); ripple ratio within 5%			
External	Current	0.15 A			
supply power	Inrush current	5.0 A within 230 μs			
Online module ch	ange	Supported			
Internal current co	onsumption (5 VDC)	0.33 A			
Weight		0.14 kg			

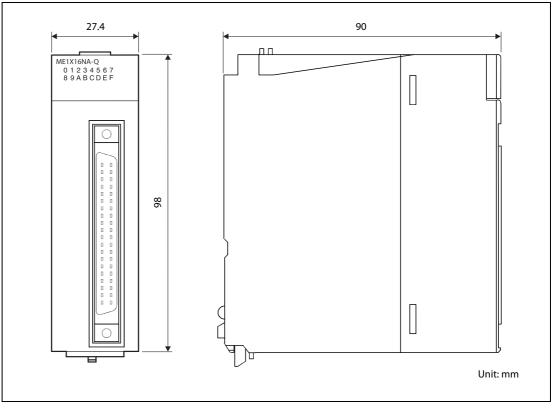
Tab. 3-3: Specifications of the ME1X16NA-Q

 $^{\textcircled{}}$ For the setting method, please refer to section 4.5.

3.2.1 Input Filter

The input signals are internally filtered to suppress any induced noise. The filter has an influence on the signal timing. This influence depends on the ON current and OFF current values of the connected NAMUR sensors.

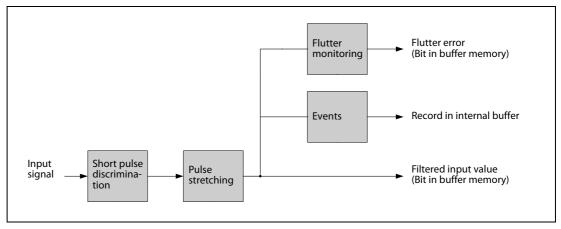



Fig. 3-2: Distortion of input pulses

A positive pulse will be extended by the distortion time after the input filter and a negative pulse will be reduced by the distortion time. The worst case distortion time is:

Max. fall time – min. rise time = 2.5 ms

3.2.2 External Dimensions


Fig. 3-3: Dimensions of the ME1X16NA-Q

3.3 Functions of the NAMUR Input Module

Function	Description	Reference section
Short pulse discrimination (filtering)	Short pulses of the input signal can be eliminated.	3.3.1
Pulse stretching	Input signals can be extended to an adjustable minimum value.	3.3.2
Flutter monitoring	Fluttering input signals can be detected.	3.3.3
Events	Signal changes of an input signal or errors can be defined as an event. When an event occurs, the relevant data is stored in the ME1X16NA-Q.	3.3.4

Tab. 3-4: Functions of the ME1X16NA-Q

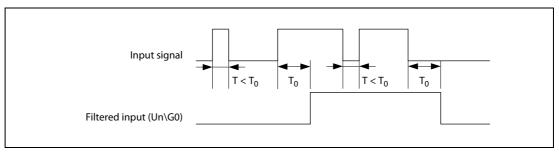
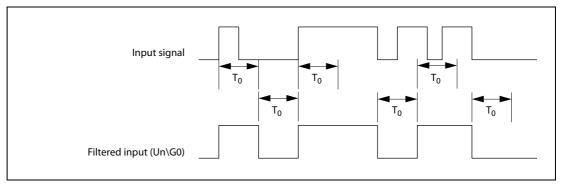

Signal Flow

Fig. 3-4: Signal flow of the ME1X16NA-Q

3.3.1 Short Pulse Discrimination (Filtering)

The short pulse discrimination eliminates short pulses (positive or negative). The minimum allowed length for pulses is adjustable by the parameter T_0 in the range from 0 to 2 s in increments of 5 ms. If the parameter T_0 is set to 0, the function is disabled.


Fig. 3-5: Pulses shorter than the time T_0 are not recognized as changes of the input signal

The short pulse discrimination time can be set for each input in the buffer memory addresses Un\G30 to Un\G45 (refer to section 3.5.12).

3.3.2 Pulse Stretching

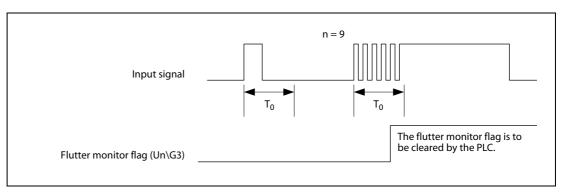
The pulse stretching function extends any filtered input signal pulse (positive or negative) to an adjustable minimum value (T_0). The parameter T_0 can be set in the range of 0 to 2 s in increments of 100 ms. If the parameter T_0 is set to 0, the function is disabled.

Fig. 3-6: Pulses shorter than the time T_0 are extended

The time for the minimum pulse length can be set for each input in the buffer memory addresses $Un\G46$ to $Un\G61$ (refer to section 3.5.13).

3.3.3 Flutter Monitoring

With flutter monitoring it is possible to detect fluttering signals which can be a hint for a defective sensor or a poorly adjusted target.


If a certain number of signal changes (Parameter n) or more are detected in a certain time (Parameter T_0), input signal Xn1 is turned ON, indicating a fault. Additionally a bit in the buffer memory is set which shows the faulty input. Both the input signal Xn1 and the buffer memory bit has to be reset by the application.

The parameter T_0 can be in the range from 0 to 60 s in increments of 500 ms. If the parameter T_0 is set to 0, the function is disabled.

The parameter n can be set in the range from 2 to 31.

NOTE

The parameter n stands for the number of signal changes and not for the number of pulses. One pulse of the input signal has two signal changes (OFF to ON and ON to OFF.)

Fig. 3-7: When n or more signal changes occur during the interval T_{0} , flutter is recognized

The first interval T_0 is started when a slope is detected, the next interval T0 is started with the next slope after the previous interval T_0 .

The parameters for flutter monitoring can be set for each input in the buffer memory addresses Un\G62 to Un\G77 (refer to section 3.5.14).

NOTE

If the input signal flutters for less than $2 \times T_0$ it may be not detected in some situation (refer to figure below). In order to detect short flutter signals reliably, T_0 should be as short as possible.

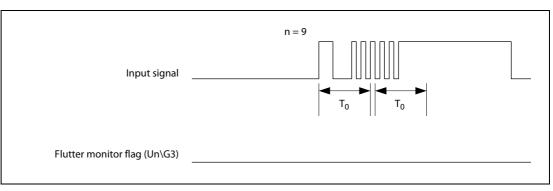


Fig. 3-8: Short flutter signals

3.3.4 Events

Signal changes of an input signal or errors (wire break, short circuit, flutter) can be defined as an event. In case of an event, the type of event, cause of the event etc. together with the date and time of the event is stored in an internal buffer in the ME1X16NA-Q. This buffer can store the data of up to 64 events.

The data of one event is also stored in the buffer memory of the ME1X16NA-Q, where it can be retrieved by the PLC CPU.

To indicate that there is event data in the buffer memory, a signal (Xn4) to the PLC CPU is switched ON. After reading the event data, the PLC CPU turns ON the signal "Event reset" (Yn4) to reset Xn4. If another event is pending, Xn4 turns ON again as soon as Yn4 has been turned OFF.

The internal buffer works "first in – first out". With an empty internal buffer and an empty event buffer in the buffer memory, the first event is shown in the buffer memory. Subsequent events are stored in the internal buffer. After a Xn4/Yn4 handshake, the data of the second event is moved to the buffer memory.

Please note that there is no indication of the number of events waiting in the internal buffer. In order to read the data of all events, the user has to execute the Xn4/Yn4 handshake as long as the signal Xn4 turns ON.

The events are counted in order to simplify the evaluation of their sequence.

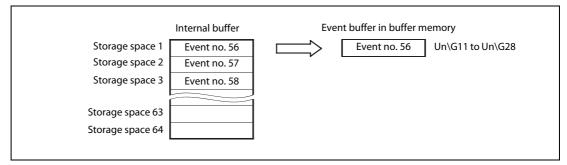


Fig. 3-9: Example with two more events pending in the internal buffer

Time stamping

The event data also includes the date and time of the event (time stamp). This data is taken from the internal clock of the ME1X16NA-Q.

If the time stamp is not needed, setting of the internal clock is not required.

If the time stamp is evaluated, system wide consistent real-time clock (RTC) data is necessary. For this reason the PLC provides RTC data to the ME1X16NA-Q and the module continues its own time keeping with the internal clock.

To keep accuracy, the time shall be updated at least every minute. The procedure to set the clock of the ME1X16NA-Q is described in section 3.5.15.

There are several ways to acquire RTC data. The following should be seen as examples.

• Use of the internal clock of the PLC CPU

The internal clock of the PLC CPU can be set by a programming tool (GX Developer, GX IEC Developer, GX Works2) or the sequence program using a DATEWR or S(P).DATEWR instruction.

For reading the date and time out of the PLC CPU, a DATERD or S(P).DATERRD instruction can be used. The difference between these two instructions is that the S(P).DATERRD also reads the milliseconds from the clock. Since the milliseconds are required for the clock of the ME1X16NA-Q, a S(P).DATERRD should preferably be used. However, a S(P).DATERRD cannot be executed by MELSEC System Q Basic PLC CPU modules and for some of the other CPUs of the MELSEC System Q a certain function version is needed.

When the milliseconds of the time stamp are not evaluated, also a DATERD instruction can be used.

For a detailed description of these instructions, please refer to the programming manual for the MELSEC System Q and the L Series.

• Time synchronization via Ethernet

The real-time clock data is transmitted to the PLC CPU via Ethernet and then stored in the ME1X16NA-Q.

• Time synchronization using SNTP (Simple Network Time Protocol)

Using an QnUDECPU (with built-in Ethernet Port) or a MES interface module Q71MES96 the clock of the PLC CPU can be set through communications with an SNTP server computer. This enables to synchronize the time for the entire system. The clock data is then stored in the ME1X16NA-Q.

3.4 I/O Signals for the Programmable Controller CPU

3.4.1 List of I/O signals

Note that the I/O numbers (X/Y) shown in this section and thereafter depends on the mounting position resp. on the start I/O number or head address of the ME1X16NA-Q. This head address has to be added to the shown I/O numbers.

For example, if the ME1X16NA-Q occupies the range from X/Y040 to Y/X05F the head address is X/Y040. However the least significant digit is omitted and the head address "n" in this case reads as "4". The "module ready" input (Xn0) will be X40 and the "error flag" will be X4F.

NOTE

In this manual, the I/O signals of the ME1X16NA-Q for communication with the PLC CPU are designated Xn0 to Xn1F and Yn0 to Yn1F. The inputs from the NAMUR sensors are designated CH0 to CHF.

Signal direction	CPU Module ← ME1X16NA-Q	Signal direction	CPU Module \rightarrow ME1X16NA-Q			
Device No. (Input)	Signal name	Device No. (Output)	Signal name			
Xn0	Module ready	Yn0	Use prohibited			
Xn1	Flutter warning	Yn1	Flutter warning clear request			
Xn2	Update real-time clock acknowledge	Yn2	Update real-time clock			
Xn3	Use prohibited	Yn3	Use prohibited			
Xn4	Event detection	Yn4	Event reset			
Xn5	Event buffer full	Yn5	Event buffer clear request			
Xn6	Use prohibited	Yn6				
Xn7	External 24 V ready	Yn7	Use prohibited			
Xn8	Use prohibited	Yn8				
Xn9	Operating condition setting complete	Yn9	Operating condition setting request			
XnA		YnA				
XnB	Use prohibited	YnB	Use prohibited			
XnC		YnC				
XnD	Wire break detection	YnD	Wire break detection clear request			
XnE	Short circuit detection	YnE	Short circuit detection clear request			
XnF	Error	YnF	Error clear request			
Xn10 to Xn1F	Use prohibited	Yn10 to Yn1F	Use prohibited			

Tab. 3-5:I/O signals of the ME1X16NA-Q

NOTE

The "Use prohibited" signals cannot be used by the user since they are for system use only. If these are turned ON/OFF by the sequence program, the performance of the NAMUR input module cannot be guaranteed.

3.4.2 Details of I/O signals

Input signals

Device No.	Signal Name	Description							
Xn0	Module ready	 When the programmable controller CPU is powered on or reset, this signal turns on when the preparation for module operation has been completed. 							
XIIO	Module ready	 When the NAMUR input module has a watchdog timer error, "Module ready" (Xn0) turns OFF. 							
		 The flutter warning turns ON when a flutter is detected on a least one input and therefore at least one bit of Un\G3 is set. 							
		 To switch OFF the flutter warning (Xn1) and to clear the flutter monitor flags (Un\G3), switch the flutter warning clear request (Yn1) ON. 							
		• When the flutter warning (Xn1) is OFF, switch the flutter warning clear request (Yn1) OFF.							
		Performed by the ME1X16NA-Q							
		Performed by the sequence program							
Xn1	Flutter warning	Flutter monitor flags (Un\G3)							
		ON							
		Flutter warning (Xn1) OFF							
		ON							
		Flutter warning clear request (Yn1) OFF							
Xn2	Update real-time clock acknowledge	 This signal is switched ON when the signal Yn2 (update real-time clock) has been switched ON to adjust the real-time clock of the ME1X16NA-Q. 							
AIIZ		 Xn2 is switched OFF after Yn2 has been switched OFF (refer to section 3.5.15). 							
	1	 The signal Xn4 is ON when an event is pending in the event buffer (Un\G11 to Un\G28, refer to section 3.5.11). 							
	-	 To switch OFF Xn4, switch ON the signal Yn4 (Event reset). With the rising edge of 							
Xn4	Event detection	Yn4, Xn4 turns OFF. After Xn4 has turned OFF, switch Yn4 OFF. If another event is pending, Xn4 turns ON again as soon as Yn4 has ben turned OFF. This timing is shown in section 3.5.11.							
Xn5	Event buffer full	• This signal turns ON if the internal event buffer is full.							
CIIA	Event buffer full External 24 V ready	• This signal turns OFF if at least one position in the internal event buffer is free.							
Xn7		 This signal turns ON as soon as the external 24 V supply is available and the commu- nication with the NAMUR input circuit is stable. 							
		• This signal turns OFF when the external 24 V are not present or the communication with the NAMUR input circuit is disturbed.							
		 It is recommended to check this signal always before using any of the input values in the buffer memory addresses Un\G0 to Un\G3. 							

Tab. 3-6: Detailed description of the input signals (Signal direction ME1X16NA-Q \rightarrow CPU Module)

Device No.	Signal Name	Description
	2	 This signal is used as an interlock condition to turn ON/OFF the operating condition
		setting request (Yn9) when any of the following settings has been changed.
		 Error detection settings (buffer memory address Un\G4)
		 Event buffer enable settings (buffer memory addresses Un\G8 to Un\G10)
		 Short pulse discrimination settings (buffer memory addresses Un\G30 to Un\G45)
		 Pulse stretching settings (buffer memory addresses Un\G46 to Un\G61)
		 Flutter monitoring parameters (buffer memory addresses Un\G62 to Un\G77)
		• The operating condition setting completed flag (Xn9) turns OFF when the operating condition setting request (Yn9) is ON.
		• To update settings, write new values into the buffer memory while Xn9 is ON, then switch Yn9 ON.
	Operating	Xn9 will be ON until new settings are stored in the module. As soon as Xn9 is OFF, switch Yn9 OFF. After completion of the update, Xn9 will be ON again.
Xn9	condition setting	———→ Performed by the ME1X16NA-Q
	completed flag	Performed by the sequence program
		Module ready (Xn0)
		Operation condition
		setting completed
		flag (Xn9)
		Operation condition / / / //
		 Among module initialization, the parameter update procedure using the Yn9/Xn9 handshake must be performed at least once to avoid using undefined operation parameters.
		 This signal turns ON if a wire break is detected on one or more input enabled for error detection (the according bit in Un\G4 is set, please refer to section 3.5.6).
		 To switch OFF this signal, replace the faulty sensor(s) or deactivate the error detec- tion for the faulty channel(s) and then switch the wire break detection clear request (YnD) ON.
		When XnD is OFF, switch YnD OFF.
		The wire break is
		removed.
		Wire break flags (Un\G5)
XnD	Wire break	
	detection	Latched wire break flags
		(Un\G1)
		Wire break detection (XnD) OFF
		Wire break clear request
		(YnD) OFF
		> Performed by the ME1X16NA-Q
		Performed by the sequence program
	I	

Tab. 3-6: Detailed description of the input signals (Signal direction ME1X16NA-Q \rightarrow CPU Module)

Device No.	Signal Name	Description
XnE	Short circuit detection	 This signal turns ON if a short circuit is detected on one or more inputs enabled for error detection (the according bit in Un\G4 is set, please refer to section 3.5.6). To switch OFF this signal, replace the faulty sensor(s) or deactivate the error detection for the faulty channel(s) and then switch the short circuit detection clear request (YnE) ON. When XnE is OFF, switch YnE OFF. The short circuit is removed. Short circuit flags (Un\G6) Latched short circuit flags (Un\G6) Short circuit detection OFF ON OFF OFF Performed by the ME1X16NA-Q Performed by the sequence program
XnF	Error flag	 The error flag turns ON when an error occurs. The error code is stored in buffer memory address Un\G90. To turn the error flag (XnF) OFF, remove the cause of the error and set the error clear request (YnF) to ON. When the error flag (XnF) is OFF, set the error clear request (YnF) to OFF. Performed by the ME1X16NA-Q Performed by the sequence program

Tab. 3-6: Detailed description of the input signals (Signal direction ME1X16NA-Q \rightarrow CPU Module)

Output signals

Device No.	Signal Name	Description
Yn1	Flutter warning	Turn ON this signal to clear a flutter warning.
YNI	clear request	• For the ON/OFF timing, please refer to the entry for input Xn1 in table 3-6.
		 Turn ON this signal after writing the clock data into the real-time clock setting register (Un\G80 to Un\G87).
Yn2	Update real-time clock	• Wait until Xn2 is switched ON.
	CIUCK	• Switch OFF Yn2.
		Please refer to section 3.5.15 for a detailed description of the update sequence.
Yn4	Event reset	This signal controls the reading process of the event buffer.
rn4	Event reset	• For the ON/OFF timing, please refer to the entry for input Xn4 in table 3-6.
VaF	Event buffer clear	• Turn this signal ON while there are any recorded events pending (Xn4 (Event) is ON.) to clear the internal event buffer.
Yn5	request	 After the event buffer is cleared (Xn4 and in case of a full event buffer also Xn5 is switched OFF), switch this signal back to OFF.
		 Turn ON this signal when changing any of the following settings to make the set- tings valid.
		 Error detection settings (buffer memory address Un\G4)
	Operating	 Event buffer enable settings (buffer memory addresses Un\G8 to Un\G10)
Yn9	condition setting request	 Short pulse discrimination settings (buffer memory addresses Un\G30 to Un\G45)
		 Pulse stretching settings (buffer memory addresses Un\G46 to Un\G61)
		 Flutter monitoring parameters (buffer memory addresses Un\G62 to Un\G77)
		• For the ON/OFF timing, please refer to the entry for input Xn9 in table 3-6.
YnD	Wire break detec-	 Turn this signal ON to clear a wire break error.
IIID	tion clear request	• For the ON/OFF timing, please refer to the entry for input XnD in table 3-6.
YnE	Short circuit detec-	Turn this signal ON to clear a short circuit error.
THE	tion clear request	• For the ON/OFF timing, please refer to the entry for input XnE in table 3-6.
VаГ	Funan alaan naari isat	• Turn this signal ON to clear an error.
YnF	Error clear request	• For the ON/OFF timing, please refer to the entry for input XnF in table 3-6.

Tab. 3-7: Detailed description of the output signals (Signal direction CPU Module \rightarrow ME1X16NA-Q)

3.5 Buffer Memory

The NAMUR input module has a memory range assigned as a buffer for temporary storage of data, such as input values or wire break flags. The PLC CPU can access this buffer and both read the stored values from it and write new values to it which the module can then process (settings for the module's functions such as short pulse discrimination times, flutter monitoring parameters, etc.).

Each buffer memory address consists of 16 bits.

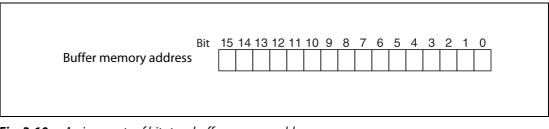


Fig. 3-10: Assignments of bits to a buffer memory address

NOTE

Do not write data in the "system areas" of the buffer memory. If data is written to any of the system areas, the PLC system may not be operated properly. Some of the user areas contain partially system areas. Care must be taken when reading/writing to the buffer memory. Also, do not write data (e.g. in a sequence program) to the buffer memory area where writing is disabled. Doing so may cause malfunction.

The "Default" value indicated in the following tables is the initial value set after the power is turned on or the PLC CPU is reset.

Instructions for data exchange with the buffer memory

Communication between the PLC CPU and the buffer memory of special function modules is performed with FROM and TO instructions.

The buffer memory of a special function module can also accessed directly, e.g. with a MOV instruction. The special function module addressed in this way can be mounted on a base unit or an extension base unit but not in remote I/O stations.

Format of the device address: Un\Gn

- Un: Head address of the special function module
- Gn: Buffer memory address (decimal)

For example the device address U3\G11designates the buffer memory address 11 in the special function module with the head address 3 (X/Y30 to X/Y3F).

In this User's Manual the latter form of addressing is used throughout.

For full documentation of all the instructions with examples please refer to the Programming Manual for the MELSEC System Q and the L series.

3.5.1 Buffer Memory Assignment

Add	ress						Deferrer	
Hexa- decimal	Decimal	Description			Default	R/W [*]	Reference (Section)	
0н	0	Filtered input va	lues		0000н	R	3.5.2	
1н	1	Wire break flags	(Latched)		0000н	R	3.5.3	
2н	2	Short circuit flag	s (Latched)		0000н	R	3.5.4	
3н	3	Flutter monitor f	lags		0000н	R	3.5.5	
4н	4		ettings		0000н	R/W	3.5.6	
5н	5	Wire break flags			0000н	R	3.5.7	
6н	6	Short circuit flag	S		0000н	R	3.5.8	
7н	7	System area	-		—	—	_	
8н	8	-	Positive edge (Inpu	t Un\G0)	0000н		3.5.9	
9н	9	Event buffer	Negative edge (Inp	ut Un\G0)	0000н	R/W	5.5.5	
Ан	10	enable flags	Errors (Flutter moni Un\G5, Short circuit	tor Un\G3, Wire break : Un\G6)	0000н		3.5.10	
Вн	11		Status					
Сн	12		Event ID (Free Runn	ing Event Counter)				
Dн	13			Year				
Ен	14	π		Month				
Fн	15			Day				
10н	16		Time-stamp	Hour				
11н	17		Time stamp	Minute				
12н	18			Second				
13н	19			Day of the week				
14 _H	20			Milliseconds				
15н	21	Event buffer	Event information	Input number	0000н	R	3.5.11	
16н	22	Event Builer	Event mormation	Event code	000011	, ,	5.5.11	
17н	23			Input trigger				
18 н	24			Filtered input values before trigger				
19 н	25		Detailed buffer	Filtered input values after trigger				
1Ан	26	Filtered input valu Wire break flags (L Short circuit flags Flutter monitor fla Error detection set Wire break flags Short circuit flags Short circuit flags Short circuit flags System area Event buffer enable flags Event buffer enable flags System area Input 0 (CH0) Input 1 (CH1) Input 2 (CH2) Input 3 (CH3) Input 4 (CH4) Input 5 (CH5) Input 7 (CH7)	memory log	Current wire break flags after trigger				
1Вн	27			Current short circuit flags after trigger				
1Сн	28			Flutter monitor flags after trigger				
1Dн	29	System area						
1Ен	30	Input 0 (CH0)						
1 F н	31	Input 1 (CH1)]					
20н	32	Input 2 (CH2)						
21н	33	Input 3 (CH3)						
22н	34	Input 4 (CH4)						
23н	35	Input 5 (CH5)						
24н	36	Input 6 (CH6)]					
25н	37	Input 7 (CH7)	Short pulse discrim	ination time	0000н	R/W	3.5.12	
26н	38	Input 8 (CH8)	shore pulse discrim		000011		5.5.12	
27н	39	Input 9 (CH9)						
28н	40	Input 10 (CHA)]					
29 н	41	Input 11 (CHB)						
2Ан	42	Input 12 (CHC)						
2Вн	43	Input 13 (CHD)						
2Сн	44	Input 14 (CHE)]					
2Dн	45	Input 15 (CHF)						

 Tab. 3-8:
 Buffer memory assignment of the ME1X16NA-Q

Add	ress					Deferrer
Hexa- decimal	Decimal	Description		Default	R/W [*]	Reference (Section)
2Ен	46	Input 0 (CH0)				
2 F н	47	Input 1 (CH1)				
30н	48	Input 2 (CH2)				
31н	49	Input 3 (CH3)				
32н	50	Input 4 (CH4)				
33н	51	Input 5 (CH5)				
34н	52	Input 6 (CH6)				
35н	53	Input 7 (CH7)		0000H	R/W	2 5 1 2
36н	54	Input 8 (CH8)	Pulse stretching time	0000H	r/ vv	3.5.13
37н	55	Input 9 (CH9)				
38н	56	Input 10 (CHA)				
39 ⊦	57	Input 11 (CHB)				
ЗАн	58	Input 12 (CHC)				
3Вн	59	Input 13 (CHD)				
3Сн	60	Input 14 (CHE)				
3Dн	61	Input 15 (CHF)				
3Ен	62	Input 0 (CH0)				
3Fн	63	Input 1 (CH1)				
40н	64	Input 2 (CH2)				
41н	65	Input 3 (CH3)				
42н	66	Input 4 (CH4)				
43н	67	Input 5 (CH5)				
44 _H	68	Input 6 (CH6)				
4 5н	69	Input 7 (CH7)			5 4 4	
46 H	70	Input 8 (CH8)	Flutter monitoring parameters	0000н	R/W	3.5.14
47 н	71	Input 9 (CH9)				
48 ⊦	72	Input 10 (CHA)				
49 ⊦	73	Input 11 (CHB)				
4Ан	74	Input 12 (CHC)				
4 Вн	75	Input 13 (CHD)				
4Cн	76	Input 14 (CHE)				
4Dн	77	Input 15 (CHF)				
4 Ен	78	Custom succ				
4Fн	79	System area		_	_	_
50н	80		Year			
51н	81		Month			
52н	82		Day			
53н	83	Real-time clock	Hour	0000	D /A/	3.5.15
54н	84	setting	Minute	0000н	R/W	3.3.15
55н	85		Second			
56н	86		Day of the week			
57н	87	1	Millisecond	1		
58 н	88	Suctom and	•			
59 н	89	System area			—	—
5Ан	90	Error Code		0000н	R/W	3.5.16
5 В н	91					
	to	System area			_	_
7FFFн	32767	1				

Tab. 3-8: Buffer memory assignment of the ME1X16NA-Q

Indicates whether reading from and writing to a sequence program are enabled.
 R : Read enabled
 W : Write enabled

3.5.2 Filtered Input Values (Un\G0)

When after all filtering an input signal is "1", the respective bit in the buffer memory address Un\G0 is set to 1.

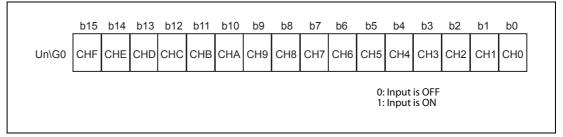
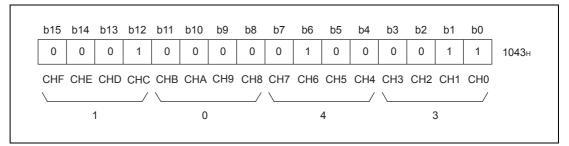



Fig. 3-11: Assignment of the bits in buffer memory address 0

Example \bigtriangledown When the inputs CHC, CH6, CH1 and CH0 have a "1"-input signal, 1043H (4163) is stored into buffer memory address 0 (Un\G0).

Fig. 3-12: In this example the inputs CHC, CH6, CH1 and CH0 are switched ON

 \triangle

3.5.3 Latched Wire Break Flags (Un\G1)

- When a wire break is detected for an input activated for error detection, the respective bit in the buffer memory address Un\G1 is set to 1.
- When the wire break condition is gone, the bit will remain set until completion of the wire break detection clear request process using XnD/YnD signals.
- The respective bit in Un\G0 (filtered input value) is set to 0 as long as the input is within wire break condition.

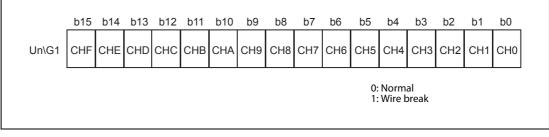


Fig. 3-13: Assignment of the bits in buffer memory address 1

Example ∇ When there is a wire break on CH8, 0100H (256) is stored into buffer memory address 1 (Un\G1).

0 0 0 0 0 1 0	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	
CHF CHE CHD CHC CHB CHA CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0 0 1 0 0 1 0 0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0100н
	CHF	CHE	CHD	СНС	СНВ	СНА	CH9	CH8	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	CH0	
0 1 0 0	\			/	\			/	\			/	\			/	
	0					1					0			(C		

Fig. 3-14: In this example a broken wire is detected for input CH8

 \triangle

3.5.4 Latched Short Circuit Flags (Un\G2)

- When a short circuit is detected for an input activated for error detection, the respective bit in the buffer memory address Un\G2 is set to 1.
- When the short circuit condition is gone, the bit will remain set until completion of the short circuit detection clear request process using XnE/YnE signals.
- The respective bit in Un\G0 (filtered input value) is set to 0 as long as the input is within short circuit condition.

Fig. 3-15: Assignment of the bits in buffer memory address 2

Example ∇ When there is a short circuit on CHA, 0400H (1024) is stored into buffer memory address 2 (Un\G2).

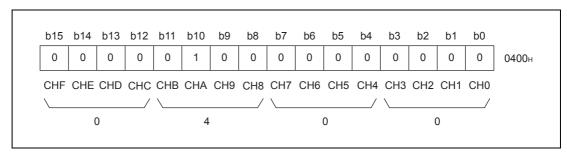


Fig. 3-16: In this example a short circuit is detected for input CHA

 \triangle

3.5.5 Flutter Monitor Flags (Un\G3)

- When fluttering is detected for an input with activated flutter monitoring function, the respective bit in the buffer memory address Un\G3 is set to 1.
- For information how to activate the flutter monitoring function for a certain input, please refer to section 3.3.3.
- When at least one flutter monitoring flag in Un\G3 is 1, the signal Xn1 is switched ON (section 3.4.)
- The flags are reset by the signal Yn1 (Flutter warning clear request) only.

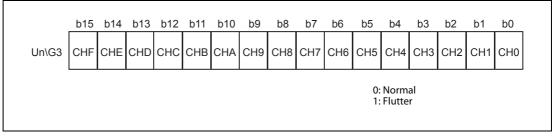


Fig. 3-17: Assignment of the bits in buffer memory address 3

Example ∇ When input CH5 shows fluttering, 0020H (32) is stored into the buffer memory address 3 (Un\G3).

b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0020н
CHF	CHE	CHD	СНС	CHB	СНА	CH9	CH8	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	CH0	
\			/	\searrow			/	$\$			/	\			/	
0				0			2			0						

Fig. 3-18: In this example flutter is detected for input CH5

 \triangle

3.5.6 Error Detection Settings (Un\G4)

- To enable wire break and short circuit detection for a certain input, set the according bit in Un\G4 to 1.
- Any changes will not take effect until the new value is committed by using the Yn9/Xn9 handshake procedure (refer to section 3.4.2).
- An input not activated for error detection will not have its wire break or short circuit bit set in case of an error (but the respective input value bit will still be set to 0 during error condition) nor will it influence the Signals XnD and XnE.
- This is to avoid continuous error detection if not all 16 NAMUR channels are used. It is recommended to enable error detection for each used NAMUR channel.

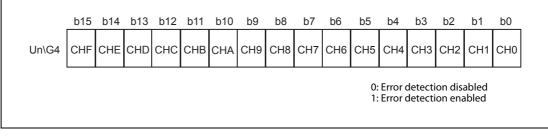
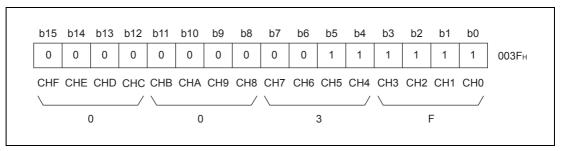



Fig. 3-19: Assignment of the bits in buffer memory address 4

Example \bigtriangledown To enable error detection for NAMUR channels 0 to 5, store 003FH (63) in the buffer memory address 4 (Un\G4)

Fig. 3-20: In this example error detection is enabled for the inputs CH0 to CH5

 \triangle

3.5.7 Wire Break Flags (Un\G5)

- As long as an input enabled for error detection is in a wire break condition, the respective bit in the buffer memory address Un\G5 is set to 1.
- When the NAMUR input circuit detects that the wire break condition is gone, the respective bit will be reset to 0. No wire break detection clear request process using YnD/XnD signals is required.

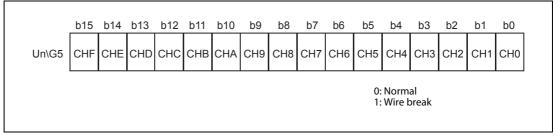


Fig. 3-21: Assignment of the bits in buffer memory address 5

Example \bigtriangledown As long as the inputs CH0 to CH5 are enabled for error detection and when there is a wire break on the inputs CH1 and CH4, the value 0012H (18) is stored in the buffer memory address 5 (Un\G5).

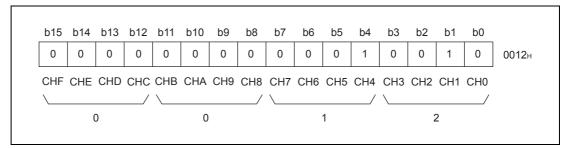


Fig. 3-22: In this example a broken wire is detected for the inputs CH1 and CH4.

 \triangle

3.5.8 Short Circuit Flags (Un\G6)

- As long as an input enabled for error detection is in a short circuit condition, the respective bit in the buffer memory address Un\G6 is set to 1.
- When the NAMUR input circuit detects that the short circuit condition is gone, the respective flags will be reset to 0. No short circuit detection clear request process using XnE/YnE signals is required.

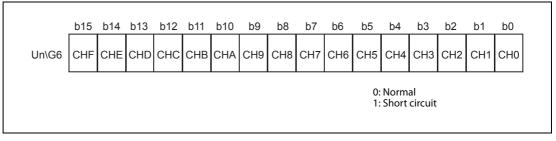


Fig. 3-23: Assignment of the bits in buffer memory address 6

Example \bigtriangledown As long as the inputs CH0 to CH5 are enabled for error detection and when there is a short circuit on input CH3, 0008H (8) is stored into buffer memory address 6 (Un\G6).

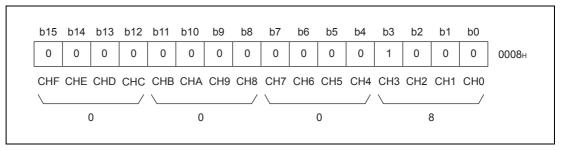


Fig. 3-24: In this example a short circuit is detected for input CH3

 \triangle

3.5.9 Event Buffer Enable Settings (Positive Edge (Un\G8), negative Edge (Un\G9))

- The inputs in Un\G0 can trigger an event in the moment they are switched ON or OFF. This is enabled in the buffer memory addresses 8 (Un\G8) and 9 (Un\G9).
- To trigger an event when the respective input is switched ON, enable the event in Un\G8 (positive edge).
- If you want to trigger an event when the respective input is switched OFF, enable the event in Un\G9 (negative edge).
- Any changes in Un\G8 and Un\G9 will not take effect until the new value is committed by using the Yn9/Xn9 handshake procedure (refer to section 3.4.2).

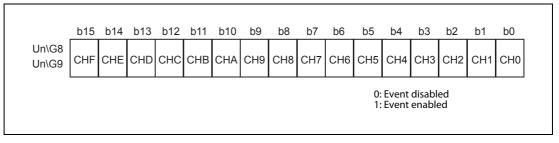
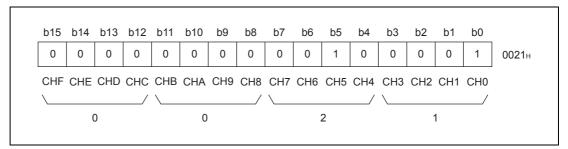



Fig. 3-25: Assignment of the bits in the buffer memory addresses 8 and 9

Example \bigtriangledown A positive edge on Input CH0 or CH5 (Un\G0.0 or Un\G0.5) triggers an event if 0021H (33) is stored into the buffer memory address 8 (Un\G8).

Fig. 3-26: An event is triggered when the input CH0 or the input CH5 is switched ON

 \triangle

Example \bigtriangledown If 0022H (34) is stored into the buffer memory address 9 (Un\G9), a negative edge on Input CH1 or CH5 triggers an event.

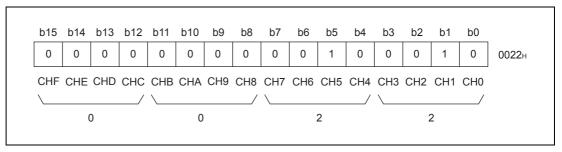


Fig. 3-27: An event is triggered when either of the inputs CH1 or CH5 is switched OFF

 \triangle

3.5.10 Event Buffer Enable Settings (Errors) (Un\G10)

• A wire break, short circuit or signal fluttering error (positive edge in Un\G5, Un\G6 or Un\G3) on the selected inputs in Un\G10 will trigger an event.

Each signal flutter error will generate a new error event even if the Flutter Monitor Flags in Un\G3 are not cleared.

 Any changes in Un\G10 will not take effect until the new value is committed by using the Yn9/ Xn9 handshake procedure (refer to section 3.4.2).

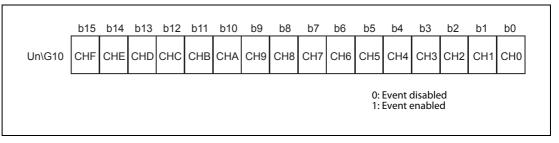


Fig. 3-28: Assignment of the bits in the buffer memory address 10

Example ∇ An error on input CH0, CH1 or CH5 triggers an event if 0023H (35) is stored into the buffer memory address 10 (Un\G10).

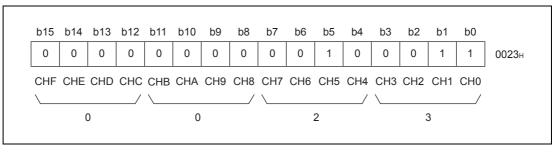


Fig. 3-29: An event is triggered when an error is detected for one of the inputs CH0, CH1 or CH5

 \triangle

NOTE

3.5.11 Event Buffer (Un\G11 to Un\G28)

The event buffer logs the changes of the inputs and respective errors. By evaluating the event buffer, it is possible to track sequences of switching events.

- Only those inputs enabled in the Event Buffer Enable Settings (Un\G8, Un\G9 and Un\G10) can trigger an event.
- The module has an internal buffer for 64 events. The sequence program has to read out the events to empty the internal buffer.
- If the internal event buffer is full, new events will not be recorded.
- The event buffer works "first in first out".

Status (Un\G11)

In the buffer memory address Un\G11 the status of an event record is stored.

Status	Meaning
0000н	Valid event
0011н	First recorded event since the real-time clock was adjusted within the last second.
Other	Not used

Event ID (Free Running Event Counter) (Un\G12)

The event counter is incremented with every event, even if the event buffer is full and the event can not be recorded. This allows to detect missed events in case the event buffer is full.

Time-stamp (Un\G13 to Un\G20)

The time-stamp indicates the date and time the event has happened. The clock data is read from the internal clock of the ME1X16NA-Q and stored in binary format in the buffer memory addresses listed below:

Un\G13: Year	(1980 to 2079, The "Year" is stored as four-digit indication.)
Un\G14: Month	(1 to 12)
Un\G15: Day	(1 to 31)
Un\G16: Hour	(24-hour clock, 0 to 23)
Un\G17: Minute	(0 to 59)
Un\G18: Second	(0 to 59)
Un\G19: Day of the week	(0 to 6, 0: Sunday, 1: Monday, 2: Tuesday 6: Saturday)
Un\G20: Milliseconds	(0 to 999)

The format, the order of data and the data ranges are identical to the S(P).DATERD instruction.

$\textbf{Example} \ \nabla$

If an event was triggered on Monday, 24th December 2012 at 10:57:39 and 530 ms.

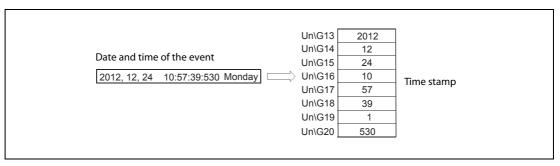
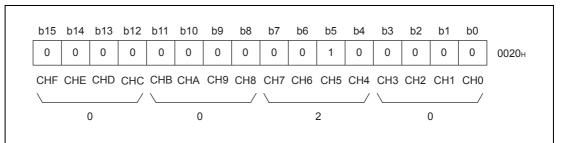
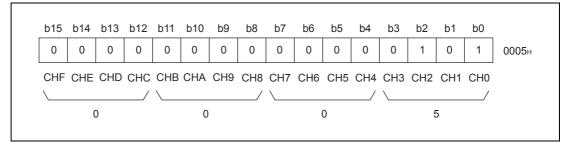


Fig. 3-30: Storage of date and time


Input number (Un\G21), input trigger (Un\G23)

The input trigger register shows which input triggered the event. When several inputs generate an event within 1 ms, a separate event is stored in the event buffer for each input, starting with input 0. Those events have the same time stamp.*

In addition, the input number register (UnG21) shows the decimal number of the input that triggered the event.


* If for example both inputs CH5 and CH0 trigger an event within 1 ms, separate events are generated for CH0 first and then CH5 with the same time stamp.

Example ∇ If 0020H (32) is stored in the input trigger register (Un\G23), input CH5 has triggered the event.

Fig. 3-31: The contents of Un\G23 indicates that the event was triggered by input CH5

In addition, the decimal channel number 5 will be stored in the input number register (Un\G21).

Fig. 3-32: Un\G21 shows the number of the input

 \triangle

Event code (Un\G22)

The event code shows the type of event recorded for the input.

Event code	Type of event
F001H	Wire break
F002н	Short circuit
F004H	Signal flutter
F008H	Positive edge
F00Cн	Combined positive edge and signal flutter
F010H	Negative edge
F011н	Combined negative edge and wire break
F012н	Combined negative edge and short circuit
F014н	Combined negative edge and signal flutter
Other	Not used

 Tab. 3-10:
 Event codes in buffer memory address Un\G22

Sequence to read out the event buffer

- ① Make sure the signal Yn4 (Reset event) is OFF and wait until the signal Xn4 (Event) is switched ON.
- (2) Read out the event buffer (UnG11 to UnG28).
- ③ Switch Yn4 (Reset event) ON and wait until the signal Xn4 (Event) is switched OFF.
- ④ Switch Yn4 (Reset event) OFF.
- (5) Continue with Step (1).

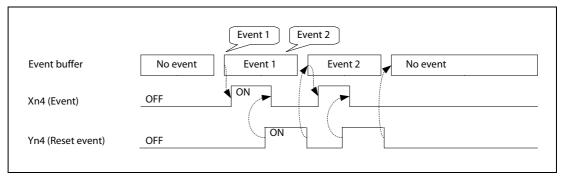
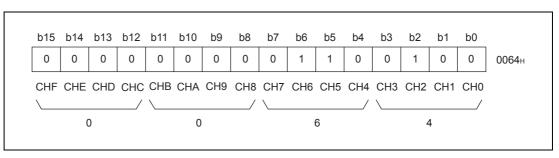



Fig. 3-33: Reading of the event buffer

3.5.12 Short Pulse Discrimination Time CH (Un\G30 to Un\G45)

- For each input of the module a buffer memory address to adjust the short pulse discrimination time (section 3.3.1) is provided.
- The time can be adjusted from 0 to 2 s in 5 ms steps.
 Set time = Set value × 5 ms (setting range 0 to 400)
 For example, the set value 400 (190H) means 400 × 5 ms = 2000 ms = 2 s
- If the set value is outside the allowed range, an error will occur.
- If the time is set to 0, the function is disabled for the respective input.
- Any changes in the area Un\G30 to Un\G45 will not take effect until the new value is committed by using the Yn9/Xn9 handshake procedure (refer to section 3.4.2)

Example ∇ To set input CH3 to a short pulse discrimination time of 500 ms, 64H (100) is written into Un\G33.

Fig. 3-34: Setting of a short pulse discrimination time of 500 ms in Un\G33 for input CH3

 \triangle

3.5.13 Pulse Stretching Time $CH\Box$ (Un\G46 to Un\G61)

- The pulse stretching time (section 3.3.2) of each input can be adjusted in the buffer memory.
- The time can be adjusted from 0 to 2 s in 100 ms steps.
 Set time = Set value × 100 ms (setting range 0 to 20)
 For example, the set value 20 (14H) means 20 × 100 ms = 2000 ms = 2 s
- If the set value is outside the allowed range, an error will occur.
- If the time is set to 0, the function is disabled for the respective input.
- Any changes in the area Un\G46 to Un\G61 will not take effect until the new value is committed by using the Yn9/Xn9 handshake procedure (refer to section 3.4.2).

Example ∇ To set input CH3 to a pulse stretching time of 500 ms, 5H (5) is written into Un\G49.

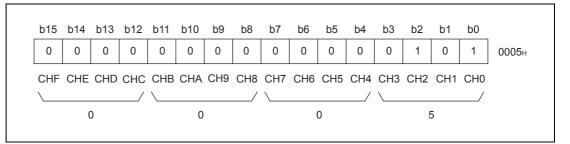


Fig. 3-35: Setting of a pulse stretching time of 500 ms in Un\G49 for input CH3

 \triangle

3.5.14 Flutter Monitoring Parameters CH (Un\G62 to Un\G77)

- Using flutter monitoring it is possible to detect fluttering signals (refer to section 3.3.3).
- For each input of the module, the time of the flutter monitoring window and the maximum allowed number of signal changes can be set in the buffer memory.

	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
Un\G62 :	Max	imum	allowe	ed nun	nber of	fsignal	chan	ges		F	lutter	monito	oring w	vindov	/	•
Un\G77																

Fig. 3-36: Assignment of the buffer memory addresses 62 to 77

The window time can be adjusted from 0 to 60 s in 500 ms steps.
 Set time = Set value × 500 ms (setting range 0 to 120)
 For example, the set value 120 (79H) means 120 × 500 ms = 60000 ms = 60 s

- The setting range for the maximum allowed number of signal changes is 2 to 31.
- If any value outside the setting range is set, an error occurs and the corresponding error code is stored in buffer memory address Un\G90.
- If the window time is set 0, the function is disabled for the respective input.
- Any changes in the buffer memory addresses Un\G62 to Un\G77 will not take effect until the new value is committed by using the Yn9/Xn9 handshake procedure (refer to section 3.4.2).

Example \bigtriangledown To set input CH4 to a 10 s window and a maximum of 6 signal changes, 0614H (5126) is written into Un\G66. (The set value for a flutter monitoring window of 10 s is 20 (14H).)

Fig. 3-37: The flutter monitoring parameters for input CH4 are set in Un\G66

 \triangle

3.5.15 Real-Time Clock Setting (Un\G80 to Un\G87)

- Data for setting the internal clock of the ME1X16NA-Q is stored in the buffer memory addresses Un\G80 to Un\G87.
- To keep accuracy, the time shall be updated at least every minute.
- For best accuracy, make sure to run the following process as fast as possible with no additional delays (I/Os normally are refreshed by the execution of the END instruction. In order to avoid delays caused by the cycle time, specify direct access I/Os (DXn2, DYn2).)
- The procedure to set the RTC data of the module is as follows:
 - ① Make sure the signal Yn2 (Update real-time clock) is OFF.
 - ② Get the clock data.

When using the internal clock of the PLC CPU, execute a S(P).DATERD instruction to read the clock data out of the PLC CPU (Please note that the S(P).DATERD instruction reads the data including the milliseconds whereas the DATERD instruction does not read the milliseconds.)

- ③ Move the clock data into Un\G80 to Un\G87 (Copy the result of the S(P).DATERD instruction into these buffer memory addresses.)
- ④ Switch the signal Yn2 (Update real-time clock) ON.
- (5) Wait Xn2 (Update real-time clock acknowledge) to become ON.
- 6 Switch the signal Yn2 (Update real-time clock) OFF.

Sequence program	Run S(P).DATERD and copy results to BFM	
Xn2 (Update real-time clock acknowledge)	OFF ON	
Yn2 (Update real-time clock)	OFF ON	
	Performed by the ME1X16NA-	Q
	Performed by the sequence pr	ogram

Fig. 3-38: Updating of the real time clock

- After the RTC has been updated, the first event within one second after the update will have its event status set to 0011H to indicate that the RTC has been adjusted.
- The data in the buffer memory addresses Un\G80 to Un\G87 has the same format as delivered by the S(P).DATERD instruction:

Un\G80: Year	(1980 to 2079)
Un\G81: Month	(1 to 12)
Un\G82: Day	(1 to 31)
Un\G83: Hour	(24-hour clock, 0 to 23)
Un\G84: Minute	(0 to 59)
Un\G85: Second	(0 to 59)
Un\G86: Day of the week	(0 to 6, 0: Sunday, 1: Monday, 2: Tuesday 6: Saturday)
Un\G87: Milliseconds	(0 to 999)

Example ∇ The clock is set to Friday, 19th October 2012; 09:48:14 and 257 ms.

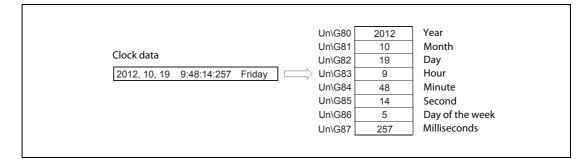


Fig. 3-39: Storage of date and time

 \triangle

3.5.16 Error Code (Un\G90)

- If an error occurs (In this case the signal XnF is ON), the error code is stored in the buffer memory address Un\G90.
- For more details of the error codes, please refer to section 6.1. Errors can be caused e.g. by the values in Un\G30 to Un\G77.
- If two or more errors have occurred, the latest error found by the module is stored.
- The error code can be cleared by turning ON the error clear request (YnF).

Example \bigtriangledown If the value in Un\G33 is set to 401 (allowed is a maximum of 400) and the Yn9/Xn9 handshake is performed, an error will occur. The error code 33 (21H) is stored in Un\G90.

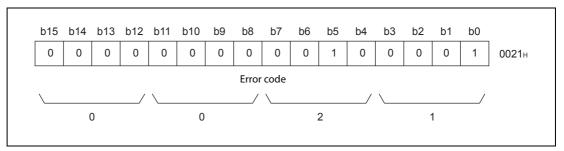


Fig. 3-40: The error code 33 means that the setting in the buffer memory address Un\G33 is not correct

 \triangle

4 Setup and Procedures before Operation

4.1 Handling Precautions

- Do not drop the module or subject it to heavy impact.
- Do not remove the PCB of the module from its case. Doing so may cause the module to fail.
- Prevent foreign matter such as dust or wire chips from entering the module. Such foreign matter can cause a fire, failure, or malfunction.
- Before handling the module, touch a grounded metal object to discharge the static electricity from the human body.

Failure to do so may cause the module to fail or malfunction.

• Tighten the module fixing screw within the following range. A loose screw may cause short circuits, failures, or malfunctions.

Screw location	Tightening torque range
Module fixing screw (M3 screw, optional)	0.36 to 0.48 Nm

Tab. 4-1: Tightening torque

• To mount the module on the base unit, fully insert the module fixing latch into the fixing hole in the base unit and press the module using the hole as a fulcrum.

Improper installation may result in a module malfunction, or may cause the module to fall off.

4.2 Setup and Procedures before Operation

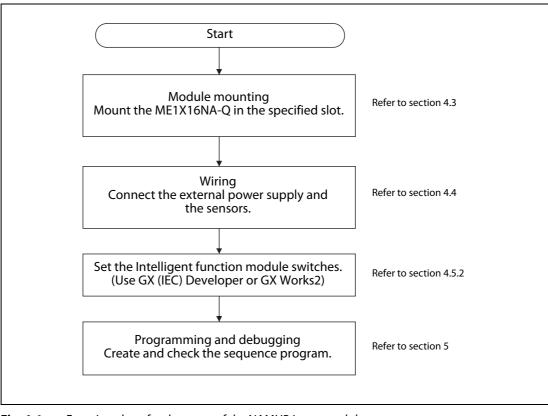


Fig. 4-1: Function chart for the setup of the NAMUR input module

4.3 Installation of the Module

The ME1X16NA-Q can be combined with a CPU module or, when mounted to a remote I/O station, with a master module for MELSECNET/H (refer to section 2.1).

CAUTION:

- Always insert the module fixing latch of the module into the module fixing hole of the base unit. Forcing the hook into the hole will damage the module connector and module.
- Do not touch the conductive parts of the module directly.
- ① After switching of the power supply, insert the module fixing latch into the module fixing hole of the base unit.
- ② Push the module in the direction of the arrow to load it into the base unit.

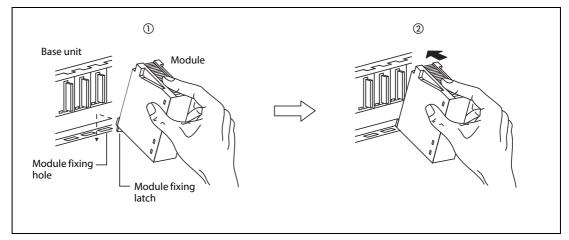
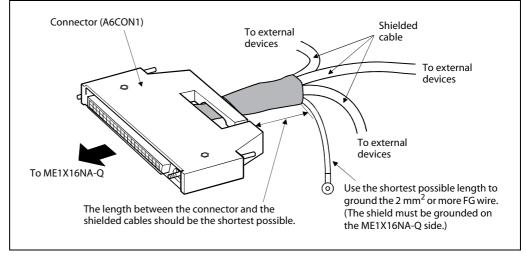


Fig. 4-2: Module installation


(3) Secure the module with an additional screw (M3 \times 12) to the base unit if large vibration is expected. This screw is not supplied with the module.

4.4 Wiring

4.4.1 Wiring Precautions

Please observe the following precautions for external wiring:

- Always confirm the terminal layout before connecting the wires to the ME1X16NA-Q.
 (For the signal layout of the connector please refer to section 3.1.1)
- Correctly solder the external wiring connector. An incomplete soldering could lead to malfunctioning.
- Make sure that foreign matter such as cutting chips and wire scraps does not enter the ME1X16NA-Q. Failure to observe this could lead to fires, faults or malfunctioning.
- A protective label is attached on the top of the ME1X16NA-Q to avoid foreign matter such as wire scraps from entering inside during wiring process. Do not remove the label until the wiring is completed. Before starting the system, however, be sure to remove the label to ensure heat radiation.
- Securely mount the external device connector to the connector on the ME1X16NA-Q with two screws.
- Do not disconnect the external wiring cable connected to the ME1X16NA-Q by pulling the cable section. When the cable has a connector, be sure to hold the connector connected to the ME1X16NA-Q. Pulling the cable while it is connected to the ME1X16NA-Q may lead to malfunctioning or damage of the ME1X16NA-Q or cable.
- Do not bundle or adjacently lay the connection cable connected to the ME1X16NA-Q external I/O signals with the main circuit line, power line, or the load line other than that for the PLC. Separate these by 100 mm as a guide. Failure to observe this could lead to malfunctioning caused by noise, surge, or induction.
- If the shielded cable is not secure, unevenness or movement of the shielded cable or careless pulling on it could result in damage to the ME1X16NA-Q or shielded cable or defective cable connections could cause misoperation of the unit.
- If the cable connected to the ME1X16NA-Q and the power line must be adjacently laid (less than 100 mm), use a shielded cable. Ground the shield of the cable securely to the control panel on the ME1X16NA-Q side. (A wiring example is given below.)

Wiring example of shielded cable.

Fig. 4-3: Wiring example for noise reduction (in this case a connector A6CON1 is used)

Preparation of the connector

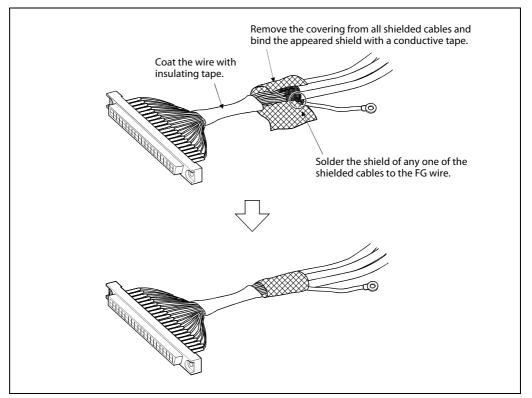
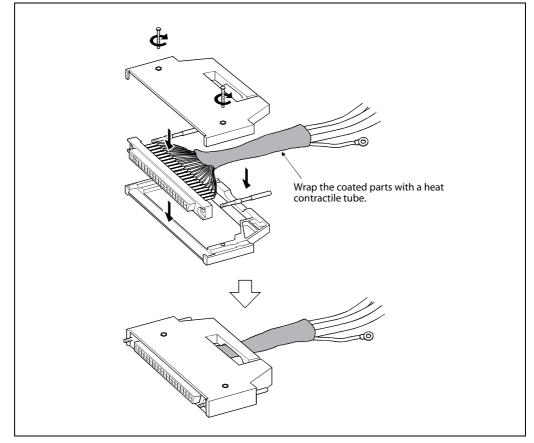



Fig. 4-4: Connection of a FG wire to each shielded cable

Assembling of the connector

Fig. 4-5: Assembling of the connector (A6CON1)

• To make this product conform to the EMC and Low Voltage Directive, be sure to use a AD75CK type cable clamp (manufactured by Mitsubishi Electric) for grounding to the control box.

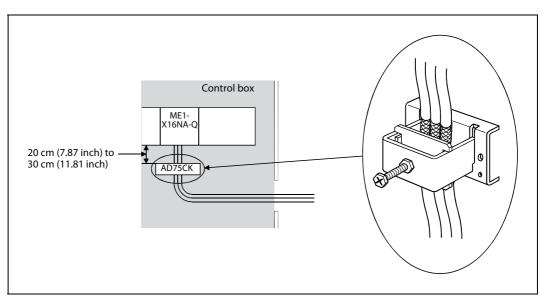


Fig. 4-6: Grounding of a shielded cable using a AD75CK cable clamp

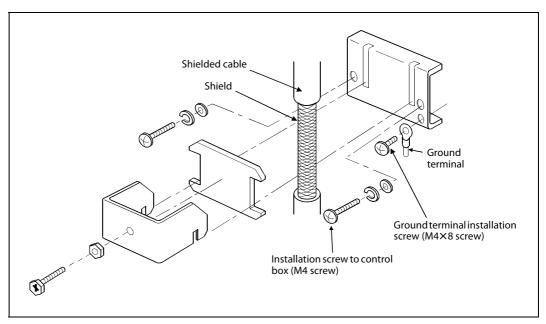


Fig. 4-7: Mounting of a AD75CK cable clamp

Using the AD75CK, you can tie four cables of about 7 mm outside diameter together for grounding.

- The influence of noise may be reduced by installing ferrite cores to the cable connected to the ME1X16NA-Q as a noise reduction technique.
- Even if compliance with the EMC directive is not required, the influence of external noise may be reduced by making the configuration compliant with the EMC directive.

4.4.2 External Wiring

Up to 16 NAMUR sensors can be connected to one ME1X16NA-Q. For connection, a 40-pin connector is used (refer to section 3.1.1).

Applicable cables

For best noise immunity, use shielded cable for the sensors. Ground the shield as described in the previous section 4.4.1.

External power supply

For operation of the ME1X16NA-Q, an external power supply of 24 V DC (+20%, -15%, which gives a voltage range of 20.4 to 28.8 V DC), is required.

Connect the external 24 V power to the pins 24V and 24G of the connector. One pole of the external power may be connected to earth.

Connection of the external wiring

WARNING:

- Leave the "vacant" pins unconnected.
- Do not connect any voltage to a $DI \square$ or $VS \square$ pin.

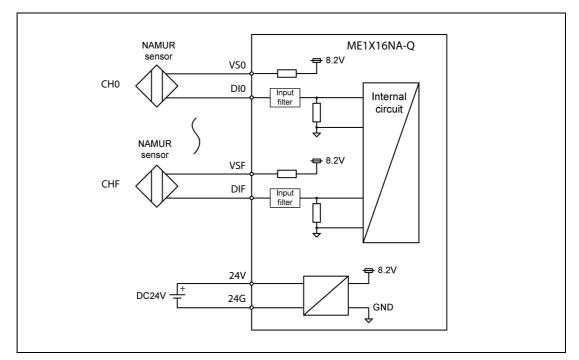


Fig. 4-8: External wiring of the ME1X16NA-Q

4.5 PLC Parameter Setting

In the PLC parameters the I/O assignment for the ME1X16NA-Q, the HOLD/CLEAR function and the fast conversion function are set.

4.5.1 I/O Assignment

Start GX Developer, GX IEC Developer or GX Works2 and open up the project with the ME1X16NA-Q. After the selection of *Parameter* in the Project Navigator Window, double click on *PLC parameter*. The Q parameter setting window will appear. Click on the *I/O assignment* tab.

0.	Assignment	(*)						
	Slot	Туре		Model name	Points	StartXY	· 🔺	
0	PLC	PLC	🔻 Q02	UDCPU		•		Switch setting
1	0(*-0)	Intelli.	▼ ME [*]	IX16NA-Q	32points	-	Select	
2	1(*-1)		-			-		Detailed setting
3	2(*-2)		•			-		
4	3(*-3)		-		5	-		
5	4(*-4)		-			•		
6	5(*-5)		-			-		
7	6(*-6)		-			-	-	
L		e I/O address is not r setting blank will not		is the CPU does it au ror to occur.	tomatically.			
		e model name	'ower mode	Extension cabl	e Slots		Base mode	

Fig. 4-9: I/O assignment setting screen

Set the following for the slot in which the ME1X16NA-Q is mounted:

Туре:	Select "Intelli."
Model name:	ME1X16NA-Q (Entering of the module model name is optional. The entry is used for documentation only and has no effect on the function of the module.)
Points:	Select 32 points.
StartXY:	Start I/O number for the ME1X16NA-Q. (Assigning of the I/O address is not necessary as the address is automatically assigned by the PLC CPU.)

4.5.2 Intelligent Function Module Switch Settings

The HOLD/CLEAR setting and the Fast conversion mode for each input of the ME1X16NA-Q is selected by "switches" in the PLC parameters. There are no switches at the module itself.

HOLD/CLEAR function

When the internal communication is not stable or when there is no communication (e.g. the external 24 V are not present and the NAMUR circuit is not supplied), depending on the switch 3 settings the filtered input values in Un\G0 are reset to 0 (CLEAR) or latched (HOLD) until the communication is restored.

The wire break and short circuit flags in Un\G1 and Un\G2 are latched in any case until they are reset by error clear request using XnD/YnD and XnE/YnE signals.

Fast conversion mode

Since the NAMUR input circuit uses an analog low-pass filter with a time constant of 0.6 ms to improve signal quality, any change of the analog input value takes some time to load the filter capacitor. This leads to transient states when switching immediately from one state to another. For example, changing directly from wire break to short circuit will pass through 0-state and 1-state even though those states are not signalled by the sensor. To avoid this, all input values are delayed for 3 milliseconds to perform a consistency check.

This delay can be skipped by using fast conversion mode to reduce the time between an input signal change and the new module output by 3 ms, but in that case an output of the transient states described above may occur.

Switch 5 is used to enable or disable the fast conversion mode.

Setting the switches

The intelligent function module switches are set using 16 bit data (4 hexadecimal digits).

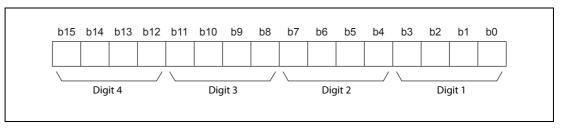


Fig. 4-10: Bit assignment for one switch

In the I/O assignment setting screen (section 4.5.1) click on *Switch setting* to display the screen shown below, then set the switches as required. The switches can easily be set if values are entered in hexa-decimal. Change the entry format to hexadecimal and then enter the values.

			gent function module					
				1	nput format	HE	< -	7
					npacionna			
	Slot	Type	Model name	Switch 1	Switch 2	Switch 3	Switch 4	Switch 5 🔺
0	PLC	PLC	Q02UDCPU					
1	0(*-0)	Intelli.	ME1X16NA-Q	0000	0000	0000	0000	0000
2	1(*-1)							

Fig. 4-11: Switch setting for intelligent function module screen

When the intelligent function module switches are not set, the default value for switches 1 to 5 is 0000H.

Switch	Sett	ting item
Switch 1	Reserved	Fixed to 0H
Switch 2	Reserved	
Switch 3	HOLD/CLEAR function setting (CH0 to CHF) b15 $b6$ $b5$ $b4$ $b3$ $b2$ $b1$ $b0angle and and an analysis of the set of the se$	HOLD/CLEAR function setting for inputs CH0 to CHF 0: CLEAR 1: HOLD
Switch 4	Reserved	Fixed to 0н
Switch 5	Fast conversion mode (CH0 to CHF)b15b6b5b4b3b2b1b0 \square \square \square \square \square \square \square \square CHFCH6CH5CH4CH3CH2CH1CH0	 Fast conversion for inputs CH0 to CHF 0: Fast conversion mode for according NAMUR input disabled (default setting); additional output delay of 3 ms. 1: Fast conversion mode for according NAMUR input enabled; no additional output delay.

 Tab. 4-2:
 Switch settings for the ME1X16NA-Q

• Setting example:

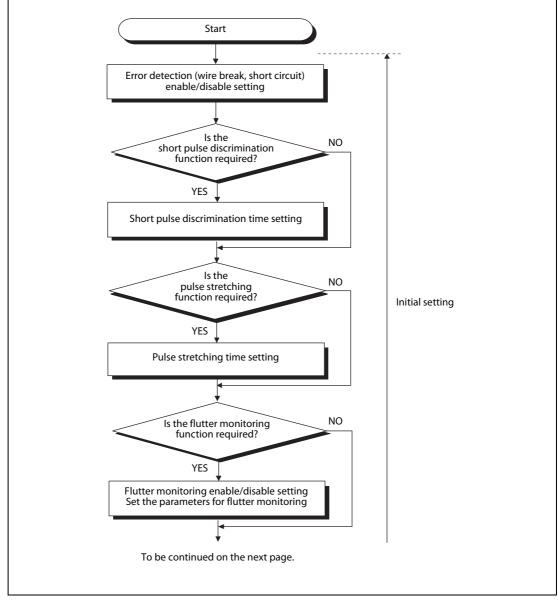
The configuration shown below is used for the setting example.

Function			Input														
		CHF	CHE	CHD	CHC	CHB	CHA	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
HOLD/CLEAR func- tion setting	CLEAR (0)	٠	٠	•		•	•	•		•	•				•	٠	•
	HOLD (1)				•				•			•	•	•			
Fast conversion	Disabled (0)					•	•	•		•	٠	•	•	•	•		
mode	Enabled (1)	•	•	•	•				•							•	•

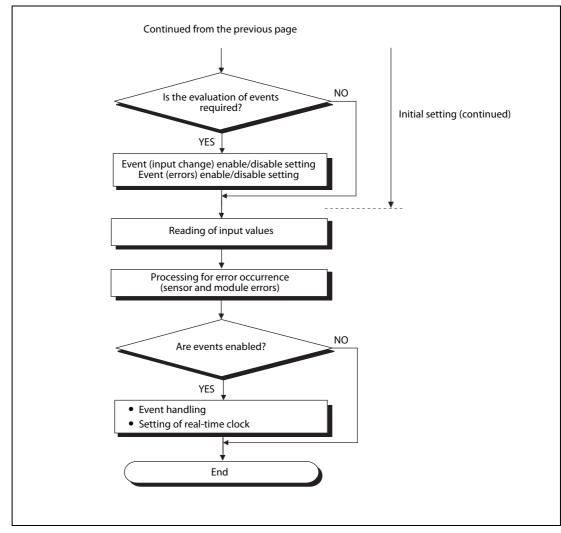
 Tab. 4-3:
 HOLD/CLEAR settings and Fast conversion mode for this example

0000н (fixed)
0000н (fixed)
0001 0001 0011 1000 = 1138н
0000н (fixed)
1111 0001 0000 0011 = F103н

5 Programming


This chapter describes the programming of the NAMUR input module ME1X16NA-Q.

NOTE


When applying any of the program examples introduced in this chapter to the actual system, verify the applicability and confirm that no problems will occur in the system control.

5.1 Programming Procedure

Create a program that will execute the initial setting of the ME1X16NA-Q, the reading of input values and the error handling in the following procedure.

Fig. 5-1: Programming procedure for the ME1X16NA-Q(1)

Fig. 5-2: Programming procedure for the ME1X16NA-Q (2)

5.2 Example 1: Reading of Input Values and Error Handling

This program example reads the input values from the ME1X16NA-Q and responds to sensor errors as well as module errors.

The following figure shows the system configuration used for this example. Eight NAMUR sensors are connected to a ME1X16NA-Q.

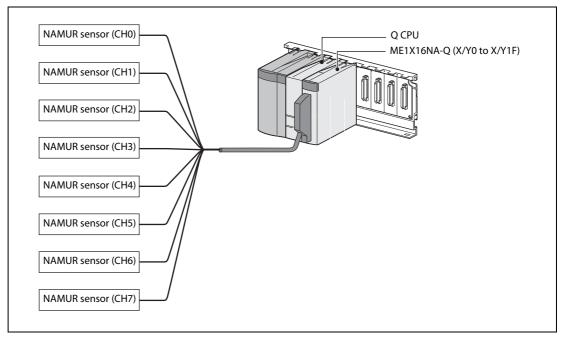


Fig. 5-3: In this example eight NAMUR sensors are connected to the ME1X16NA-Q

Input	HOLD/CLEAR function setting	Fast conversion mode
CH0 to CH7	CLEAR	Disabled
CH8 to CHF	_	—

Tab. 5-1: Conditions for the intelligent function module switch setting

Program conditions

- The input values from the NAMUR sensors are stored in the internal relays M100 to M115.
- Error detection is enabled for all connected sensors.

In case of a wire break or short circuit processing for the error is performed.

• In case of a module error the error code is read and stored in the PLC CPU.

5.2.1 Before Creating a Program

Wiring of external devices

Mount the ME1X16NA-Q on the base unit and connect the external power supply and the NAMUR sensors. For details, refer to section 4.4.

Intelligent function module switch setting

Based on the setting conditions given on the previous page, perform the switch settings for the intelligent function module in the PLC parameters.

Since by default the HOLD/CLEAR setting is set to CLEAR and the fast conversion mode is disabled, no setting is necessary when a brand-new module is used. For a module used before in an other application, checking and setting of the switches is required.

Based on the setting conditions given previously, perform the intelligent function module switch settings.

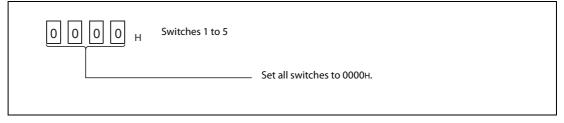


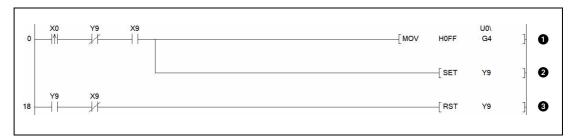
Fig. 5-4: Setting of the switches 1 to 5 for this example

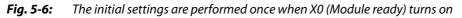
On the **Parameter setting** screen of GX Developer, GX IEC Developer or GX Works2, select the *I/O assignment* tab, click *Switch setting*, and make settings of the switches 1 to 5 as on the screen shown below (for details about the setting, refer to section 4.5.2).

Input format									
	Slot	Type	Model name	Switch 1	Switch 2	Switch 3	Switch 4	Switch 5	
	PLC	PLC	Q02UDCPU						
0							0000	0000	_
0	0(*-0)	Intelli.	ME1X16NA-Q	0000	0000	0000	0000	0000	

Fig. 5-5: Switch setting for this example

5.2.2 Program

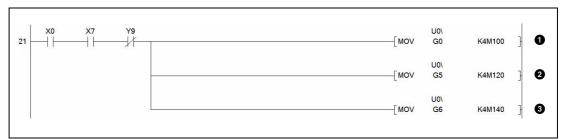

For a full documentation of the instructions used with the examples please refer to the Programming Manual for the MELSEC System Q and the MELSEC-L series.


• Used Devices

De	vice	Function	Remark
	X0	Module ready	
	X7	External 24 V ready	
Inputs	Х9	Operating condition setting complete	ME1X16NA-Q (X0 to X1F)
inputs	XD	Wire break detection	
	XE	Short circuit detection	
	XF	Error flag	
	Y9	Operating condition setting request	
Outpute	YD	Wire break detection clear request	
Outputs	YE	Short circuit detection clear request	ME1X16NA-Q (Y0 to Y1F)
	YF	Error clear request	
	M10	Wire break reset signal	—
	M11	Short circuit reset signal	—
	M12	Module error reset signal	—
Internal relays	M100 to M115	Input value CH0 to CHF	Input values of all sensors are stored in M110 (CH0) to M115 (CHF).
	M120 to M135	Wire break NAMUR sensor CH0 to CHF	The wire break detection flags for all sensors are stored in M120 (CH0) to M135 (CHF).
	M140 to M155	Short circuit NAMUR sensor CH0 to CHF	The short circuit detection flags for all sensors are stored in M140 (CH0) to M155 (CHF).
Register	D100	Error code	Error code of the ME1X16NA-Q.

Tab. 5-2: List of used devices

• Initial settings



Number	Description			
0	Error (wire break and short circuit) detection enable/disable setting (CH0 to CH7: enable)			
2	The operation condition setting request (Y9) is turned ON.			
3	When the setting is completed, the operation condition setting request is turned OFF.			

Tab. 5-3: Description of the program for the initial settings

• Reading of the input values, wire break detection flags and short circuit detection flags

Fig. 5-7: The input values are copied into internal relays

Number	Description
0	The input values are moved to the internal relays M100 to M115 for further processing in the program.
0	The wire breaks flags are moved to the internal relays M120 to M135.
3	The short circuit flags are moved to the internal relays M140 to M155.

Tab. 5-4: Description of the program shown on the previous page

• Processing at wire break detection and wire break detection clear request

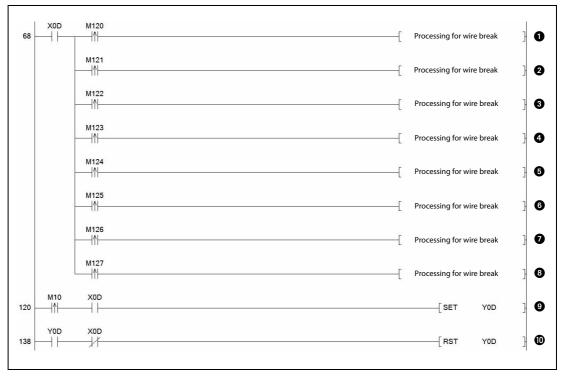


Fig. 5-8: Program part for wire break processing

Number	Description					
0		Processing for input CH0				
0	When the module detects a wire break on at least one input, XD is switched ON.	Processing for input CH1				
8		Processing for input CH2				
4		Processing for input CH3				
6	In case of a wire break, separate processing is performed for each input (e.g. issue of an alarm message, locking of the input in the program	Processing for input CH4				
6	because the input value is set to "0" in this case, etc.).	Processing for input CH5				
0		Processing for input CH6				
8		Processing for input CH7				

Tab. 5-5:Description of the program shown above

I	Number	Description
	9	When M10 (Wire break reset signal) is set while the wire break detection signal is ON, the wire break detection clear request (YD) is turned ON.
	0	When there is no wire break indicated, the wire break detection clear request (YD) is turned OFF.

Tab. 5-5: Description of the program shown above

• Processing at short circuit detection and short circuit detection clear request

Fig. 5-9: Program part for short circuit processing

Number	Description							
0		Processing for input CH0						
0	When the module detects a short circuit on at least one input, XE is switched ON. In case of a short circuit, separate processing is performed for each input (e.g. issue of an alarm message, locking of the input in the pro-	Processing for input CH1						
3		Processing for input CH2						
4		Processing for input CH3						
6		Processing for input CH4						
6	gram because the input value is set to "0" in this case, etc.).	Processing for input CH5						
0		Processing for input CH6						
8		Processing for input CH7						
9	When M11 (Short circuit reset signal) is set while the short circuit detection clear request (YE) is turned ON.	tion signal is ON, the short circuit						
0	When there is no short circuit indicated, the short circuit detection clea	ar request (YE) is turned OFF.						

Tab. 5-6: Description of the program shown above

• Module error detection

218 -	X0F			[MOV	U0\ G90	D100	}	0
238 -	M12		 		[SET	YOF	}	0
241 -	¥0F —		 		[RST	YOF	}	0

Fig. 5-10: Module error detection and handling

Number	Description
0	In case of an error the error code is stored in D100.
0	When an error has been detected and the reset signal (M12) is set to "1", the error clear request (YF) is set.
8	When there is no error indicated, the error clear request (YF) is turned OFF.

 Tab. 5-7:
 Description of the program shown above

5.3 Example 2: Signal Conditioning

In addition to the program shown in the previous section, in this program example some of the input signals are conditioned (elimination of short pulses, pulse stretching) and for one input the flutter monitoring function is used.

System configuration

In this example eight sensors are connected to a ME1X16NA-Q. The same system configuration as for example 1 is used (refer to section 5.2).

Program conditions

- The input values from the NAMUR sensors are stored in the internal relays M100 to M115.
- Error detection is enabled for all connected sensors.

In case of a wire break or short circuit processing for the error is performed.

- In case of a module error the error code is read and stored in the PLC CPU.
- Short pulses on the inputs CH0 and CH2 are eliminated.
 - The minimum allowed pulse length for CH0 is 1.4 seconds.
 - The minimum allowed pulse length for CH2 is 0.8 seconds.
- Pulses on the input CH5 are extended to a minimum length of 1.5 seconds.
- For input CH6 the flutter monitoring function is activated. Eight or more signal changes in 2 seconds are recognized as flutter.

5.3.1 Before Creating a Program

Before creating the program, perform the steps described in section 5.3.1.

5.3.2 Program

For a full documentation of all instructions used with the examples please refer to the Programming Manual for the MELSEC System Q and the MELSEC-L series.

• Used Devices

Dev	vice	Function	Remark
	X0	Module ready	
	X1	Flutter warning	
	X7	External 24 V ready	
Inputs	Х9	Operating condition setting complete	ME1X16NA-Q (X0 to X1F)
	XD	Wire break detection	
	XE	Short circuit detection	
	XF	Error flag	
	Y1	Flutter warning clear request	
	Y9	Operating condition setting request	
Outputs	YD	Wire break detection clear request	ME1X16NA-Q (Y0 to Y1F)
	YE	Short circuit detection clear request	
	YF	Error clear request	
	M10	Wire break reset signal	—
	M11	Short circuit reset signal	—
	M12	Module error reset signal	—
	M13	Flutter warning reset signal	—
Internal relays	M100 to M115	Input value CH0 to CHF	Input values of all sensors are stored in M110 (CH0) to M115 (CHF).
	M120 to M135	Wire break NAMUR sensor CH0 to CHF	The wire break detection flags for all sensors are stored in M120 (CH0) to M135 (CHF).
	M140 to M155	Short circuit NAMUR sensor CH0 to CHF	The short circuit detection flags for all sensors are stored in M140 (CH0) to M155 (CHF).
Register	D100	Error code	Error code of the ME1X16NA-Q.

Tab. 5-8: List of used devices

• Initial settings

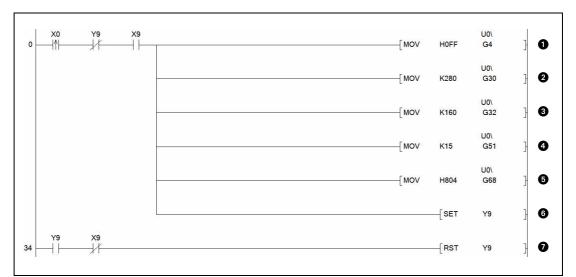


Fig. 5-11: The initial settings are performed once when X0 (Module ready) turns on

Number	Description	
0	Error (wire break and short circuit) detection enable/disable setting (CH0 to CH7: enable)	
0	Short pulse discrimination time	Input CH0: 1.4 s = 1400 ms = 280 \times 5 ms \rightarrow The value 280 is stored in Un\G30.
8	setting	Input CH2: 0.8 s = 800 ms = 160 \times 5 ms \rightarrow The value 160 is stored in Un\G32.
4	Pulse stretching time setting for input CH5: 1.5 s = 1500 ms = 15×100 ms \rightarrow The value 15 is stored in Un\G51.	
6	Setting of flutter monitoring parameters for input CH6 (n = 8, t = 2 s = 4 \times 500 ms \rightarrow The value 0804H is stored in Un\G68.)	
6	The operation condition setting request (Y9) is turned ON.	
0	When the setting is completed, the operation condition setting request is turned OFF.	

Tab. 5-9: Description of the program for the initial settings

• Reading of input values, wire break detection flags, short circuit detection flags and error processing

The processing is the same as performed for example 1. (Please refer to section 5.2.2.)

• Flutter monitoring

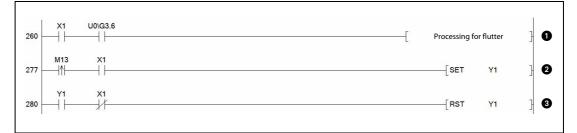


Fig. 5-12: Flutter detection and handling

Number	Description	
0	When flutter is detected for input CH6, bit 6 is set in Un\G3.	
0	M13 is used to switch the flutter warning clear request (Y1) ON.	
3	When there is no more flutter warning, the flutter warning clear request (Y1) is turned OFF.	

Tab. 5-10: Description of the program shown above

6 Troubleshooting

The following section explains the types of errors that may occur when the NAMUR input module ME1X16NA-Q is used, and how to troubleshoot such errors.

6.1 Error Code List

If an error occurs in the ME1X16NA-Q while writing to or reading data from the programmable controller CPU, an error code is written to buffer memory address 90 (Un\G90).

Error code (decimal)	Error description	Corrective action
30 to 45	The setting for the short pulse discrimination time for an input is outside the range of 0 to 400.	The error code shows the buffer memory address containing the incorrect value $(30 = Un\backslash G30$ for input CH0 to $45 = Un\backslash G45$ for input CHF). Set a value within 0 to 400.
46 to 61	The setting for the pulse stretching time for an input is outside the range of 0 to 20.	The error code shows the buffer memory address containing the incorrect value ($46 = Un \setminus G46$ for input CH0 to $61 = Un \setminus G61$ for input CHF). Set a value within 0 to 20.
62 to 77	At least one of the flutter monitoring parameters is out of range.	The error code shows the buffer memory address containing the incorrect value (62 = Un\G62 for input CH0 to 77 = Un\G77 for input CHF). Set the flutter monitoring parameters to within its valid ranges: • Flutter monitoring window: 0 to 120 • Maximum no. of allowed signal changes: 2 to 31
80 to 87	While updating the real-time clock (Yn2), the real- time clock setting value (Un\G80 to Un\G87) is out of range.	Make sure the clock data is written in the correct format into Un\G80 to Un\G87 before switching the signal Yn2 ON.
100	External 24 V not connected or hardware error of the NAMUR input circuit.	Connect the external 24 V or turn the 24 V OFF and ON again. If the error occurs again, the module may be mal- functioning. Please consult your local Mitsubishi representative, explaining the detailed description of the problem.
111	Hardware error of the module.	Turn the power OFF and ON again. If the error occurs again, the module may be mal- functioning. Please consult your local Mitsubishi representative, explaining the detailed description of the problem.

Tab. 6-1: Error code list

NOTE

When two or more errors have occurred, the latest error found by the ME1X16NA-Q is stored.

6.2 Troubleshooting by Symptom

6.2.1 When the LEDs of the ME1X16NA-Q are not turned ON

Check item	Corrective action
Is the power being supplied to the PLC?	Confirm that the supply voltage for the power supply module is within the rated range.
Is the capacity of the power supply module adequate?	Calculate the current consumption of the CPU module, I/O modules and intelligent function modules mounted on the base unit to see if the power supply capacity is adequate.
Has a watchdog timer error occurred?	Reset the programmable controller CPU and verify that it is lit. If the RUN LED does not light even after doing this, the module may be malfunctioning. Please consult your local Mitsubishi representative, explain- ing the detailed description of the problem.
Is the ME1X16NA-Q correctly mounted on the base unit?	Check the mounting condition of the module.
	 Check that the input signal Xn0 (Module ready) is ON (refer to section 3.4.2).
Has an error occurred in the ME1X16NA-Q?	• Check whether the input signal XnF (Error) is ON (refer to section 3.4.2).
	• Check the buffer memory address 90 (Un\G90) for an error code and take corrective action as described in section 6.1.
	 Check that the external supply power terminals (termi- nals No. A1 and B1) are supplied with a 24 V DC voltage.
Is 24 V DC external supply power being supplied to the ME1X16NA-0?	 Check that the input signal Xn7 (External 24V ready) is ON.
NETATONA-Q:	• Check the buffer memory address 90 (Un\G90) for an error code and take corrective action as described in section 6.1.
Is the NAMUR sensor correctly connected to the ME1X16NA-Q?	Check the connection status of the sensor (section 4.4).
Is the connected NAMUR sensor working correctly?	Check the device connected to the input.
Is there any fault with the signal lines such as disconnection or wire break?	Check for faulty condition of the signal lines by a visual check and a continuity check.

 Tab. 6-2:
 When the LEDs are not turned ON

6.2.2 When the Input Values cannot be read

Check item	Corrective action
Is an error being generated?	Check the buffer memory address 90 (Un\G90) for an error code and take corrective action as described in section 6.1.
Are the input values being written to the buffer memory?	• Verify the contents of the buffer memory address Un\G0 in the monitor of GX (IEC) Developer or GX Works2.
	 Check the sensor connected to the input.
Are the input values moved from the buffer memory of the ME1X16NA-Q to the PLC CPU correctly?	 Check the sequence program. Make sure that the input values are taken out of the correct buffer memory address (Un\G0).
	• Check that data is not moved from different sources into the same storage destination in the PLC CPU.

Tab. 6-3:When the input values cannot be read

6.2.3 When Wire Breaks and Short Circuits are not detected

Check item	Corrective action
Is the detection of wire breaks and short circuits enabled in the buffer memory address Un\G4?	Enable the detection of wire breaks and short circuits for the respective input in Un\G4.
Has the operating condition setting request (Yn9) been executed?	After a change in the buffer memory address Un\G4 the operating condition setting request (Yn9) must be switched ON to make the setting valid. Review the initial setting in the sequence program.

Tab. 6-4: When wire breaks and short circuits are not detected

6.2.4 When there is always a Wire Break detected (XnD is ON)

Check item	Corrective action
Is the detection of wire break and short circuit enabled for an unused input?	Disable the detection of wire breaks and short circuits for unused inputs in $Un\G4$ (refer to section 3.5.6).

 Tab. 6-5:
 When a wire break for an unused input is detected

6.2.5 When Flutter is not detected

Check item	Corrective action
Is the flutter monitoring enabled for the input?	 The flutter monitoring parameters are set in the buffer memory addresses Un\G62 to Un\G77 (section 3.5.14). When the window time is set to 0, the flutter monitoring function is disabled for the respective input.
Are the flutter monitoring parameters set correctly?	 When a value outside the allowed range is entered for the parameters, an error is detected and an error code is stored in the buffer memory address 90 (Un\G90). Review the settings of the parameters.
Has the operating condition setting request (Yn9) been executed?	After changing the flutter monitoring parameters in one of the buffer memory addresses Un\G62 to Un\G77, the oper- ating condition setting request (Yn9) must be switched ON to make the settings valid. Review the sequence program.

Tab. 6-6:When flutter is not detected

6.2.6 When Events are not recorded

Check item	Corrective action
Is the specific event enabled?	Enable the event for the respective input in one of the fol- lowing buffer memory addresses: - Un\G8 (positive edge of input) (section 3.5.9) - Un\G9 (negative edge pf input) (section 3.5.9) - Un\G10 (wire break, short circuit, flutter) (section 3.5.10)
Has the operating condition setting request (Yn9) been executed?	After changing the event buffer enable settings in one of the buffer memory addresses Un\G8 to Un\G10, the operating condition setting request (Yn9) must be switched ON to make the settings valid. Review the sequence program.
Is the event buffer full?	Check the status of the signal Xn5 (event buffer full). If this signal is ON, use the Yn4/Xn4 handshake to read out the events (refer to section 3.3.4). Or use the signal Yn5 to clear the event buffer.

Tab. 6-7: When events are not detected
--

6.2.7 When the Short Pulse Discrimination Function is not working

Check item	Corrective action
	 The short pulse discrimination time is set in the buffer memory addresses Un\G30 to Un\G45 (refer to section 3.5.12). When the time is set to 0, the short pulse discrimination is disabled for the respective input.
Is the short pulse discrimination time set correctly?	 When a value outside the allowed range is entered for the time, an error is detected and an error code is stored in the buffer memory address 90 (Un\G90).
	Check the buffer memory address Un\G90 for an error code and take corrective action as described in section 6.1. Review the setting of the parameters.
Has the operating condition setting request (Yn9) been executed?	After changing the short pulse discrimination time in one of the buffer memory addresses Un\G30 to Un\G45, the oper- ating condition setting request (Yn9) must be switched ON to make the settings valid. Review the sequence program.

Tab. 6-8:When short pulses are not eliminated

6.2.8 When the Pulse Stretching Function is not working

Check item	Corrective action
	 The pulse stretching time is set in the buffer memory addresses Un\G46 to Un\G61 (refer to section 3.5.13). When the time is set to 0, the pulse stretching is disabled for the respective input.
Is the pulse stretching time set correctly?	 When a value outside the allowed range is entered for the time, an error is detected and an error code is stored in the buffer memory address 90 (Un\G90).
	Check the buffer memory address Un\G90 for an error code and take corrective action as described in section 6.1. Review the setting of the parameters.
Has the operating condition setting request (Yn9) been executed?	After changing the short pulse discrimination time in one of the buffer memory addresses Un\G46 to Un\G61, the oper- ating condition setting request (Yn9) must be switched ON to make the settings valid. Review the sequence program.

Tab. 6-9:When pulse stretching is not working

6.3 Checking the Module Status

When the analog output module detail information is selected in GX Developer, GX IEC Developer or GX Works2 system monitor, an error code and the status of the intelligent function module switch setting can be checked.

• Operating GX Developer

In the Diagnostics menu select System monitor.

• Operating GX IEC Developer

In the **Debug** menu select **System monitor**.

• Operating GX Works2

In the Diagnostics menu select System Monitor.

	lus			20			10			15 15	18	Base	, Module	
_		0	1	2	3	4	5	6	7					
	MasterPLC->		22	. 22	- 22	. 22	- 22	-22		-			📕 💿 Main ba	
Powe		026M	QX80	QY80	Unmo	Unmo	Unmo	Unmo	Unmo				C Extensio	in base
r su pply		E1×1 6NA-		(-TS) 16pt	unti na		unti ng		unti ng				C Extensio	m base :
PPy	Q02HCPU	0	ropt	ropt	ng	ng	ng	ng	ing				C Extensio	in base :
	222	32pt											C Extensio	on base -
													C Extensio	on base !
				· · · ·										n hase i
irameter sl		1 0	20	20	40	50	. en	70	00				-	on base i
irameter si	atus 1/0 Address	0	20	30	40	50	60	70	.80			•	e System monitor	
23	1/0 Address	0	1	2	3	4	5	6	7			•	e	
Powe	1/0 Address	0 Intelli gent	1	2 Outp ut	3 None	4 None	5 None	6 None	7 None			•	e System monitor	je
Powe	1/0 Address	0 Intelli	1 Input	2 Outp	3	4 None	5 None	6	7				e System monitor Online module chang	ا ^ع
Powe	1/0 Address	0 Intelli gent	1 Input	2 Outp ut	3 None	4 None	5 None	6 None	7 None				e System monitor Online module chang Diagnostics	ie ormation.
Powe rsu pply	1/0 Address	0 Intelli gent	1 Input	2 Outp ut	3 None	4 None	5 None	6 None	7 None				e System monitor Online module chang Diagnostics Module's Detailed Info	ie prmation.
Powe rsu pply	1/0 Address	0 Intelli gent 32pt	1 Input	2 Outp ut 16pt	3 None	4 None	5 None 16pt	6 None	7 None 16pt	Stert	monitor		e System monitor Online module chang Diagnostics Module's Detailed Info Base Informatio	ie prmation.

Fig. 6-1: The System Monitor displays comprehensive information of the connected PLC

For further information about a module, click on the module and then click *Module Detailed Infor-mation*.

	026ME1×16NA-Q 0 Main Base OSlot	Product information 120310000000000 - B
Module Information Module access Fuse Status Status of I/O Address Ve	Possible erify Agree	I/D Clear / Hold Settings Noise Filter Setting Input Type Remote password setting status
Error Display	The display seque The latest error is o	ror Display format Tror History I C DEC Dec of the error history is from the oldest error. Isplayed in the line as under.
Contents: Disposal:		4 V 4

Fig. 6-2: Detailed information on the selected module allow an easy and quick troubleshooting

Contents of Module's Detailed Information

- Module
 - Module Name: Shows the designation of the module, e.g. ME1X16NA-Q
 - I/O Address: Head address of the module
 - Implementation Position: Shows whether the module is mounted to the main base or to an extension base and the position of the module.
 - Product information: Serial No. of the module. The letter shows the function version.
- Module Information
 - Module access: Shows whether the module is ready or not.
 - Fuse status: Not relevant for the ME1X16NA-Q.
 - Status of I/O Address Verify: Indicates whether the parameter set module and the installed module are identical.
 - I/O Clear / Hold Settings, Noise Filter Setting, etc.: Not relevant for the ME1X16NA-Q.
- Error Display
 - Checking the error code
 The error code stored in buffer memory address 90 (Un\G90) of the ME1X16NA-Q is displayed
 in the **Present Error** field.

When the *Error History* button is pressed, the contents displayed in the **Present Error** field is displayed in the No. 1 field.

Index

Buffer memory																				
Overview					 •									•			•	. 3	3- ⁻	16
Structure .	• •	 •	•	•	 •	•		•	•	•	•	•	•	•	•	•	•	. 3	3- ⁻	15

В

E

Error (input signal)
Error clear request (output signal) 3-14
Error code
List
storage in buffer memory
Event buffer clear request (output signal) 3-14
Event buffer full (input signal)
Event detection (input signal)
Event reset (output signal)
Events
Enable setting
Overview
storage in buffer memory
Troubleshooting6-3
External 24 V ready (input signal)
External power supply
Specifications
Wiring

F

Fast conversion mode 4-9 Flutter monitoring
5
Overview
Parameters
Program example5-9
Troubleshooting6-3
Flutter warning (input signal)
Flutter warning clear request (output signal) 3-14
Function version2-4

G

Н

HOLD/CLEAR

1

Input signal
Error
Event buffer full
Event detection
External 24 V ready
Flutter warning
Module ready
Operating condition setting completed3-12
Update real-time clock acknowledge
Wire break detection
Input values
in buffer memory
Troubleshooting
Intelligent function module
Parameter setting
Switch setting

LEDs									
Overview	 							•	.3-1
Troubleshooting	 								.6-2

L

М

ME1X16NA-Q
Dimensions
I/O assignment
Installation
Intelligent function module switch settings4-9
LEDs
Parameter setting
Specifications
MELSEC System Q CPU modules
MELSECNET/H remote I/O station
Module ready (input signal)
Multiple CPU system

Ν

NAMUR sensor
connection to ME1X16NA-Q4-7
Principle of operation

0

Online module change
Operating condition
Setting completed (input signal)
Setting request (output signal)
Output signal
Error clear request
Event buffer clear request
Event reset
Flutter warning clear request
Operating condition setting request 3-14
Short circuit detection clear request
Update real-time clock
Wire break detection clear request

Ρ

Pulse stretching
Overview
Program example
Troubleshooting6-4

R

Real-time clock
Setting data in buffer memory
Update (output signal)
Update acknowledge (input signal)

S

Short circuit detection
clear request (output signal)
Flags in buffer memory
Input signal
Troubleshooting6-3
Short pulse discrimination
Overview
Program example
Troubleshooting6-4
Switch settings for intelligent function module \dots 4-9
System monitor

т	
Time stamping Troubleshooting	

U

W

Wire break detection
clear request (output signal)
input signal
Troubleshooting6-3
Wiring
Connection of NAMUR sensors
Example for shielded cable
External power supply
Grounding of shielded cable

HEADQUARTERS	
MISUBISHI ELECTRIC EUROPE B.V. German Branch Gothaer Straße 8 D-40880 Ratingen	EUROPE
Phone: +49 (0)2102 / 486-0 Fax: +49 (0)2102 / 486-1120	
MITSUBISHI ELECTRIC EUROPE B.Vorg.sl. CZ Czech Branch	ECH REP.
Avenir Business Park, Radlická 714/113a C2-158 00 Praha 5 Phone: +420 - 251 551 470 Fax: +420 - 251-551-471	
MITSUBISHI ELECTRIC EUROPE B.V. French Branch 25, Boulevard des Bouvets F-92741 Nanterre Cedex Phone: +-33 (0)1 / 55 68 55 68	FRANCE
Fax: +33 (0)1 / 55 68 57 57 MITSUBISHI ELECTRIC EUROPE B.V. Irish Branch Westgate Business Park, Ballymount IRL-Dublin 24 Phone: +353 (0)1 4198800 Fax: +353 (0)1 4198890	IRELAND
MITSUBISHI ELECTRIC EUROPE B.V. Italian Branch Viale Colleoni 7 I-20041 Agrate Brianza (MB) Phone: +39 039 / 60 53 1 Fax: +39 039 / 60 53 312	ITALY
MITSUBISHI ELECTRIC EUROPE B.V. Poland Branch Krakowska 50 PL-32-083 Balice Phone: +48 (0)12 / 630 47 00 Fax: +48 (0)12 / 630 47 01	POLAND
MITSUBISHI ELECTRIC EUROPE B.V. 52, bld. 3 Kosmodamianskaya nab 8 floor RU-115054 Moscow Phone: +7 495 721-2070 Fax: +7 495 721-2071	RUSSIA
MITSUBISHI ELECTRIC EUROPE B.V. Spanish Branch Carretera de Rubí 76-80 E-08190 Sant Cugat del Vallés (Barcel Phone: 902 131121 // +34 935653131 Fax: +34 935891579	SPAIN ona)
MITSUBISHI ELECTRIC EUROPE B.V. WIK Branch Travellers Lane UK-Hatfield, Herts. AL10 8XB Phone: +44 (0)1707 / 27 61 00 Fax: +44 (0)1707 / 27 65 95	UK
MITSUBISHI ELECTRIC CORPORATION Office Tower "Z" 14 F 8-12,1 chome, Harumi Chuo-Ku Tokyo 104-6212 Phone: +81 3 622 160 60 Fas: +81 3 622 160 75	JAPAN
MITSUBISHI ELECTRIC AUTOMATION, Inc. 500 Corporate Woods Parkway Vernon Hills, IL 60061 Phone: +1 847 478 21 00 Fax: +1 847 478 22 53	USA

EUROPEAN REPRES	ENTATIVES
GEVA	AUSTRIA
Wiener Straße 89	
AT-2500 Baden Phone: +43 (0)2252 / 85 55 20	
Fax: +43 (0)2252 / 488 60	
TECHNIKON	BELARUS
Oktyabrskaya 19, Off. 705	
BY-220030 Minsk Phone: +375 (0)17 / 210 46 26	
Finite: +375 (0)17 / 210 46 26	
ESCO DRIVES & AUTOMATION	BELGIUM
Culliganlaan 3	DEEdioin
BE-1831 Diegem	
Phone: $+32(0)2/7176430$	
Fax: +32 (0)2 / 717 64 31	BELGIUM
Koning & Hartman b.v. Woluwelaan 31	DELGIUM
BE-1800 Vilvoorde	
Phone: +32 (0)2 / 257 02 40	
Fax: +32 (0)2 / 257 02 49	
	AND HERZEGOVINA
Aleja Lipa 56 BA-71000 Sarajevo	
Phone: +387 (0)33 / 921 164	
Fax: +387 (0)33/ 524 539	
AKHNATON	BULGARIA
4, Andrei Ljapchev Blvd., PO Box	(21
BG-1756 Sofia Phone: +359 (0)2 / 817 6000	
Fax: +359 (0)2 / 97 44 06 1	
INEA RBT d.o.o.	CROATIA
Losinjska 4 a	
HR-10000 Zagreb	02/02
Phone: +385 (0)1 / 36 940 - 01/ -/ Fax: +385 (0)1 / 36 940 - 03	02/ -03
AutoCont C.S. s.r.o.	CZECH REPUBLIC
Technologická 374/6	CZECH NEI ODEIC
CZ-708 00 Ostrava-Pustkove	c
Phone: +420 595 691 150 Fax: +420 595 691 199	
	DENMARK
Beijer Electronics A/S Lykkegårdsvej 17	DENMARK
DK-4000 Roskilde	
Phone: +45 (0)46/ 75 76 66	
Fax: +45 (0)46 / 75 56 26	
Beijer Electronics Eesti OU	ESTONIA
Pärnu mnt.160i EE-11317 Tallinn	
Phone: +372 (0)6 / 51 81 40	
Fax: +372 (0)6 / 51 81 49	
Beijer Electronics OY	FINLAND
Peltoie 37	
FIN-28400 Ulvila Phone: +358 (0)207 / 463 540	
Fax: +358 (0)207 / 463 541	
UTECO	GREECE
5, Mavrogenous Str.	
GR-18542 Piraeus	
Phone: +30 211 / 1206 900 Fax: +30 211 / 1206 999	
MELTRADE Kft.	HUNGARY
Fertő utca 14.	HUNGAKI
HU-1107 Budapest	
Phone: +36 (0)1 / 431-9726	
Fax: +36 (0)1 / 431-9727	
Beijer Electronics SIA	LATVIA
Ritausmas iela 23 LV-1058 Riga	
Phone: +371 (0)784 / 2280	
Fax: +371 (0)784 / 2281	
Beijer Electronics UAB	LITHUANIA
Savanoriu Pr. 187	
LT-02300 Vilnius Phone: +370 (0)5 / 232 3101 Fax: +370 (0)5 / 232 2980	

EUROPEAN REPRESENTATIVES ALFATRADE Ltd. MALTA 99, Paola Hill Malta- Paola PLA 1702 Phone: +356 (0)21 / 697 816 Fax: +356 (0)21 / 697 817 INTEHSIS srl MOLDOVA bld. Traian 23/1 MD-2060 Kishinev Phone: +373 (0)22 / 66 4242 Fax: +373 (0)22 / 66 4280 HIFLEX AUTOM.TECHNIEK B.V. NETHERLANDS Wolweverstraat 22 NL-2984 CD Ridderkerk Phone: +31 (0)180 - 46 60 04 Fax: +31 (0)180 - 44 23 55 Koning & Hartman b.v. NETHERLANDS Haarlerbergweg 21-23 NL-1101 CH Amsterdam Phone: +31 (0)20 / 587 76 00 Fax: +31 (0)20 / 587 76 05 **Beijer Electronics AS** NORWAY Postboks 487 NO-3002 Drammen Phone: +47 (0)32 / 24 30 00 Fax: +47 (0)32 / 84 85 77 Fonseca S.A. PORTUGAL R. João Francisco do Casal 87/89 **PT - 3801-997 Aveiro, Esgueira** Phone: +351 (0)234 / 303 900 Fax: +351 (0)234 / 303 910 Sirius Trading & Services srl Aleea Lacul Morii Nr. 3 ROMANIA R0-060841 Bucuresti, Sector 6 Phone: +40 (0)21 / 430 40 06 Fax: +40 (0)21 / 430 40 02 INEA RBT d.o.o. SERBIA Izletnicka 10 SER-113000 Smederevo Phone: +381 (0)26 / 615 401 Fax: +381 (0)26 / 615 401 SIMAP s.r.o. **SLOVAKIA** Jána Derku 1671 SK-911 01 Trencín Phone: +421 (0)32 743 04 72 Fax: +421 (0)32 743 75 20 PROCONT, spol. s r.o. Prešov SLOVAKIA Kúpelná 1/Å SK-080 01 Prešov Phone: +421 (0)51 7580 611 Fax: +421 (0)51 7580 650 INEA RBT d.o.o. SLOVENIA Stegne 11 **SI-1000 Ljubljana** Phone: +386 (0)1 / 513 8116 Fax: +386 (0)1 / 513 8170 Beijer Electronics AB SWEDEN Box 426 **SE-20124 Malmö** Phone: +46 (0)40 / 35 86 00 Fax: +46 (0)40 / 93 23 01 Omni Ray AG SWITZERLAND lm Schörli 5 CH-8600 Dübendorf Phone: +41 (0)44 / 802 28 80 Fax: +41 (0)44 / 802 28 28 GTS TURKEY Bayraktar Bulvari Nutuk Sok. No:5 TR-34775 Yukarı Dudullu-Ümraniye-İSTANBUL Phone: +90 (0)216 526 39 90 Fax: +90 (0)216 526 3995 CSC Automation Ltd. UKRAINE 4-B, M. Raskovoyi St. UA-02660 Kiev Phone: +380 (0)44 / 494 33 55 Fax: +380 (0)44 / 494-33-66 UKRAINF Systemgroup 2 M. Krivonosa St. UA-03680 Kiev Phone: +380 (0)44 / 490 92 29 Fax: +380 (0)44 / 248 88 68

EURASIAN REPRESENTATIVES TOO Kazpromavtomatika KAZAKHSTAN UI. Zhambyla 28 KAZ-100017 Karaganda Phone: +7 7212 / 50 10 00 Fax: +7 7212 / 50 11 50 MIDDLE EAST REPRESENTATIVES I.C. SYSTEMS LTD. EGYPT 23 Al-Saad-Al-Alee St EG-Sarayat, Maadi, Cairo Phone: +20 (0) 2 / 235 98 548 Fax: +20 (0) 2 / 235 96 625 ILAN & GAVISH Ltd. ISRAEL 24 Shenkar St., Kiryat Arie **IL-49001 Petah-Tiqva** Phone: +972 (0)3 / 922 18 24 Fax: +972 (0)3 / 924 0761 GIRIT CELADON LTD ISRAEL 12 H'aomanut Street IL-42505 Netanya Phone: +972 (0)9 / 863 39 80 Fax: +972 (0)9 / 885 24 30 **CEG INTERNATIONAL** LEBANON Cebaco Center/Block A Autostrade DORA Lebanon - Beirut Phone: +961 (0)1 / 240 430 Fax: +961 (0)1 / 240 438

AFRICAN REPRESENTATIVE CBI Ltd. SOUTH AFRICA Private Bag 2016 ZA-1600 Isando Phone: + 27 (0)11 / 977 0770 Fax: + 27 (0)11 / 977 0770 Fax: + 27 (0)11 / 977 07761 Fax: + 27 (0)11 / 977 07761

